logo
PoletMe Aviation Videos
logo
17
читателей
PoletMe Aviation Videos  
Публикации Уровни подписки Контакты О проекте Фильтры Метки Статистика Контакты Поделиться
О проекте
Дорогие друзья, вы отлично знайте, что мое хобби требует серьезных затрат времени и денег. Доход с ютуба (реклама и спонсорство) раньше компенсировали часть расходов, но теперь этого дохода нет. Те, кто поддержит канал через http://sponsr.ru, получит точно такие же бонусы, которые были в ютубе (ранний доступ к видео, упоминания в видео, полную информацию о планируемых перелетах и т. п.)
Публикации, доступные бесплатно
Уровни подписки
Ан-2 100 ₽ месяц 960 ₽ год
(-20%)
При подписке на год для вас действует 20% скидка. 20% основная скидка и 0% доп. скидка за ваш уровень на проекте PoletMe Aviation Videos
Доступны сообщения

Поддержка канала Ранний доступ к видео Полная информация о предстоящих перелетах Доступ к вишлисту

Оформить подписку
Ан-24 250 ₽ месяц 2 400 ₽ год
(-20%)
При подписке на год для вас действует 20% скидка. 20% основная скидка и 0% доп. скидка за ваш уровень на проекте PoletMe Aviation Videos
Доступны сообщения

Выбор очередности публикаций Упоминание в титрах

Оформить подписку
Ан-148 700 ₽ месяц 6 720 ₽ год
(-20%)
При подписке на год для вас действует 20% скидка. 20% основная скидка и 0% доп. скидка за ваш уровень на проекте PoletMe Aviation Videos
Доступны сообщения

Выбор перелета

Оформить подписку
Ан-124 3 800 ₽ месяц 36 480 ₽ год
(-20%)
При подписке на год для вас действует 20% скидка. 20% основная скидка и 0% доп. скидка за ваш уровень на проекте PoletMe Aviation Videos
Доступны сообщения

Имя в начале ролика

Оформить подписку
Ан-225 7 000 ₽ месяц 67 200 ₽ год
(-20%)
При подписке на год для вас действует 20% скидка. 20% основная скидка и 0% доп. скидка за ваш уровень на проекте PoletMe Aviation Videos
Доступны сообщения

Мега спонсор

Оформить подписку
Фильтры
Статистика
17 подписчиков
Обновления проекта
Метки
Санкт-Петербург 39 Москва 38 поезд 16 B738 15 Аэрофлот 14 S7 12 иран 11 ЮАР 11 A320neo 10 ак Россия 10 A319 9 SSJ100 9 казахстан 9 Ми-8 9 оаэ 9 турция 9 ATR 72 8 Йоханнесбург 8 Стамбул 8 A320 7 A321 7 B773 7 Utair 7 Новосибирск 7 Тегеран 7 Як-42 7 Якутск 7 MD83 6 Иркутск 6 КНДР 6 Манила 6 Пхеньян 6 теплоход 6 Филиппины 6 A330 5 Etihad 5 Абу-Даби 5 Алматы 5 Ан-24 5 Архангельск 5 Астана 5 Бишкек 5 Благовещенск 5 Бухарест 5 Владивосток 5 Внуково 5 Вологодское авиапредприятие 5 Казань 5 космос 5 Ленск 5 Нарьян-Мар 5 Омск 5 Томск 5 ЮЖНАЯ КОРЕЯ 5 Як-40 5 A321neo 4 A350 4 Air Koryo 4 B789 4 smartavia 4 Дубай 4 Зимбабве 4 ираэро 4 киргизия 4 китай 4 Красавиа 4 Красноярск 4 Мурманск 4 Петропавловск-Камчатский 4 Полярные авиалинии 4 Румыния 4 сеул 4 Ту-134 4 Тюмень 4 Air Astana 3 Airlink 3 B735 3 B737 3 CRJ200 3 E175 3 NordStar 3 Red Wings 3 SCAT 3 TezJet 3 Амдерма 3 Ан-2 3 Белавиа 3 Березово 3 Болгария 3 Брест 3 Виктория-Фолс 3 Воркута 3 Гомель 3 Гонконг 3 Красноселькуп 3 Маган 3 Мешхед 3 мирный 3 Новый Уренгой 3 Ош 3 Самара 3 Сангар 3 Советский 3 София 3 Сыктывкар 3 Шанхай 3 Южно-Сахалинск 3 A300 2 A318 2 A321nx 2 A380 2 Air Algerie 2 B763 2 China Eastern 2 DHC-8 2 E170 2 JS41 2 Mahan Air 2 Nordwind Airlines 2 Pegasus 2 Philippine Airlines 2 Ryanair 2 Singapore Airlines 2 Tarom 2 Turkish Airlines 2 Turkmenistan Airlines 2 Авиашельф 2 Актау 2 Актобе 2 Алжир 2 Алроса 2 Анкара 2 армения 2 Атырау 2 Ашхабад 2 Аэропром 2 белоруссия 2 Бендер-Аббас 2 Блумфонтейн 2 Булавайо 2 Ван 2 Витим 2 Владвосток 2 Вологда 2 Гавана 2 Газпромавиа 2 Давао 2 Дурбан 2 Екатеринбург 2 Ереван 2 Зея 2 Кейптаун 2 Киш 2 Клавдия Еланская 2 Куала-Лумпур 2 куба 2 Лабытнанги 2 Ларьяк 2 малайзия 2 Минеральные Воды 2 Нарьян-Марский ОАО 2 Новокузнецк 2 Норильск 2 Оран 2 Пекин 2 Пусан 2 Решт 2 Ричардс-Бэй 2 Салехард 2 Северо-Курильск 2 сингапур 2 Тимишоара 2 Тобольск 2 Трабзон 2 Турменистан 2 Улан-Удэ 2 Усть-Каменогорск 2 Усть-Куть 2 Уфа 2 Чаваньга 2 Чеджу 2 Чита 2 Шираз 2 ЮВТ Аэро 2 ямал 2 2GO Masinag 1 A310 1 A321lr 1 A330neo 1 Air Zimbabwe 1 AirAsia 1 AnadoluJet 1 Armenian Airlines 1 Asiana Airlines 1 ATA Airlines 1 B190 1 B732 1 B733 1 B736 1 B744 1 B787 1 B78X 1 Be 1 Bell 206 1 Buzz 1 C919 1 Cebu Pacific 1 CemAir 1 China Southern Airlines 1 DHC-6 1 E140 1 E145 1 E190 1 E190E2 1 Emirates 1 Ethiopian Airlines 1 Fadak 1 Fastjet Zimbabwe 1 Federal Air 1 FlyArystan 1 FlySafair 1 HiSky 1 Iran Air 1 Iran AirTour 1 Iran Aseman Airlines 1 Jeju Air 1 Kish Air 1 Korean Air 1 KTX 1 L-410 1 Malta Air 1 MD82 1 PC-6 1 Qazaq Air 1 Qeshm Airlines 1 RJ100 1 RJ85 1 Sepehran Airlines 1 South African Airways 1 Superjet 100 1 Аврора 1 Аддис-Абеба 1 азимут 1 Амурская авиабаза 1 Ан-26 1 Ан-3 1 Аргентина 1 Аэрокузбасс 1 Аэросервис 1 Бургас 1 Буэнос-Айрес 1 великий новгород 1 Великий Устюг 1 Взвад 1 Восход 1 Гипанис 1 Дудинка 1 Заря-304 1 Иваново 1 Ижавиа 1 Икар 1 Ил-62 1 Ил-96 1 Кайо-Коко 1 Караганда 1 Кедровый 1 Керман 1 Котлас 1 Маглев 1 Махачкала 1 метеор 1 Нижневартовск 1 Нижневартовскавиа 1 Ночной экспресс 1 Островной 1 Охтеурская переправа 1 Политрук Бочаров 1 РусЛайн 1 Сковородино 1 Смирных 1 Стрежевой 1 Сургут 1 Тагбиларан 1 тайга 1 Талакан 1 Таштагол 1 Ту-204 1 Ту-214 1 Тында 1 Уральские авиалинии 1 Усть-Ишим 1 Усть-Кара 1 Ханты-Мансийск 1 Хужир 1 экспресс 1 Эфиопия 1 Южное Небо 1 Больше тегов
Смотреть: 33+ мин
logo PoletMe Aviation Videos

Новое видео: Як-42 а/к Космос, рейс Санкт-Петербург — Архангельск (Васьково)

Доступно подписчикам уровня
«Ан-2»
Подписаться за 100₽ в месяц

Читать: 1+ мин
logo PoletMe Aviation Videos

Як-42 а/к Космос, вторая попытка

Доступно подписчикам уровня
«Ан-2»
Подписаться за 100₽ в месяц

Читать: 1+ мин
logo PoletMe Aviation Videos

Полёты только на Яках

Доступно подписчикам уровня
«Ан-2»
Подписаться за 100₽ в месяц

Смотреть: 30+ мин
logo PoletMe Aviation Videos

Новое видео: Ту-134 а/к Космос в VIP-компоновке

Доступно подписчикам уровня
«Ан-2»
Подписаться за 100₽ в месяц

Читать: 1+ мин
logo PoletMe Aviation Videos

Полёт на Ту-134

Доступно подписчикам уровня
«Ан-2»
Подписаться за 100₽ в месяц

Смотреть: 17+ мин
logo Орбитальные посиделки

Полярное СИЯНИЕ: Земля и другие планеты


Читать: 28+ мин
logo Кочетов Алексей

В поисках главного ответа Вселенной: от Марса до техносигнатур и парадокса Ферми…

Доступно подписчикам уровня
«⚡Собеседник»
Подписаться за 300₽ в месяц

Читать: 11+ мин
logo Кочетов Алексей

От колыбели — к звёздам. ЧАСТЬ 3: КОСМОС ДЛЯ ВЫЖИВАНИЯ И ПРОЦВЕТАНИЯ ЧЕЛОВЕЧЕСТВА

Традиционная ‎концепция‏ ‎национальной ‎безопасности ‎фокусируется ‎на ‎защите‏ ‎территории, ‎граждан‏ ‎и‏ ‎интересов ‎отдельного ‎государства‏ ‎от ‎внешних‏ ‎угроз, ‎обычно ‎исходящих ‎от‏ ‎других‏ ‎государств. ‎Эта‏ ‎парадигма, ‎сформированная‏ ‎в ‎17 ‎веке ‎Вестфальским ‎миром,‏ ‎становится‏ ‎опасно ‎устаревшей‏ ‎перед ‎лицом‏ ‎глобальных ‎и ‎космических ‎вызовов.

Планетарная ‎безопасность‏ ‎включает:

  • Защиту‏ ‎от‏ ‎астероидов ‎и‏ ‎комет ‎(около‏ ‎25000 ‎потенциально‏ ‎опасных‏ ‎объектов ‎уже‏ ‎отслеживаются);
  • Предотвращение ‎последствий ‎экстремальных ‎солнечных ‎вспышек‏ ‎(событие ‎уровня‏ ‎Кэррингтона‏ ‎1859 ‎года ‎сегодня‏ ‎вывело ‎бы‏ ‎из ‎строя ‎большую ‎часть‏ ‎электросетей‏ ‎и ‎привело‏ ‎бы ‎к‏ ‎массовому ‎сбою ‎всех ‎компьютерных ‎и‏ ‎вычислительных‏ ‎возможностей ‎человечества);
  • Подготовку‏ ‎к ‎редким,‏ ‎но ‎катастрофическим ‎событиям ‎(супервулканы, ‎события‏ ‎массового‏ ‎вымирания);
  • Разработку‏ ‎стратегий ‎выживания‏ ‎человечества ‎в‏ ‎случае ‎глобальных‏ ‎катастроф;


Масштаб‏ ‎проблемы ‎впечатляет:

  • Астероид,‏ ‎уничтоживший ‎динозавров, ‎имел ‎диаметр ‎около‏ ‎10 ‎км;
  • Челябинский‏ ‎метеорит‏ ‎2013 ‎года ‎(17-20‏ ‎метров) ‎высвободил‏ ‎энергию, ‎эквивалентную ‎500 ‎килотоннам‏ ‎тротила;
  • Астероид‏ ‎размером ‎всего‏ ‎140 ‎метров‏ ‎гарантированно ‎уничтожит ‎крупный ‎мегаполис;
  • Современные ‎технологии‏ ‎позволяют‏ ‎обнаруживать ‎лишь‏ ‎около ‎40%‏ ‎потенциально ‎опасных ‎объектов.

Может ‎ли ‎сегодня‏ ‎человечество‏ ‎спасти‏ ‎планету ‎от‏ ‎падения ‎астероида?

В‏ ‎2021 ‎году‏ ‎был‏ ‎проведен ‎первый‏ ‎в ‎истории ‎тест ‎системы ‎планетарной‏ ‎защиты ‎—‏ ‎миссия‏ ‎DART, ‎которая ‎успешно‏ ‎изменила ‎орбиту‏ ‎астероида ‎Диморфос. ‎Это ‎значимый‏ ‎шаг,‏ ‎но ‎только‏ ‎начало ‎необходимой‏ ‎работы.


Гораздо ‎более ‎масштабная ‎система ‎раннего‏ ‎обнаружения‏ ‎и ‎противодействия‏ ‎потребует ‎координации‏ ‎между ‎всеми ‎космическими ‎державами. ‎Здесь‏ ‎экономические‏ ‎и‏ ‎геополитические ‎соперники‏ ‎должны ‎стать‏ ‎союзниками ‎перед‏ ‎лицом‏ ‎общей ‎угрозы.

«Астероидная‏ ‎угроза ‎— ‎это ‎не ‎вопрос‏ ‎„если“, ‎а‏ ‎вопрос‏ ‎„когда“. ‎Масштабные ‎столкновения‏ ‎неизбежны ‎в‏ ‎геологическом ‎масштабе ‎времени», ‎—‏ ‎предупреждает‏ ‎Эд ‎Лу,‏ ‎бывший ‎астронавт‏ ‎и ‎основатель ‎организации ‎B612 ‎Foundation,‏ ‎занимающейся‏ ‎защитой ‎Земли‏ ‎от ‎астероидов.

Палеонтологическая‏ ‎летопись ‎суровым ‎языком ‎цифр ‎напоминает:‏ ‎99,99%‏ ‎всех‏ ‎видов, ‎когда-либо‏ ‎существовавших ‎на‏ ‎Земле, ‎вымерли.‏ ‎Большинство‏ ‎— ‎в‏ ‎результате ‎пяти ‎массовых ‎вымираний, ‎вызванных‏ ‎глобальными ‎катастрофами.

Человечество‏ ‎потенциально‏ ‎обладает ‎уникальной ‎способностью‏ ‎избежать ‎этой‏ ‎участи ‎через ‎космическую ‎экспансию.‏ ‎Размещение‏ ‎человеческих ‎поселений‏ ‎на ‎разных‏ ‎планетах ‎можно ‎сказать ‎создаёт ‎«резервные‏ ‎копии»‏ ‎нашей ‎цивилизации.

В‏ ‎статистических ‎терминах:

  • Вероятность‏ ‎глобальной ‎катастрофы ‎на ‎Земле ‎в‏ ‎ближайшие‏ ‎100‏ ‎лет: ‎0,1-1%‏ ‎(по ‎оценкам‏ ‎различных ‎исследователей);
  • Вероятность‏ ‎одновременной‏ ‎катастрофы ‎на‏ ‎двух ‎планетах: ‎0,0001%;
  • На ‎трёх ‎планетах:‏ ‎0,000001%.

Таким ‎образом,‏ ‎каждая‏ ‎новая ‎колонизируемая ‎планета‏ ‎или ‎небесное‏ ‎тело ‎экспоненциально ‎снижает ‎риск‏ ‎полного‏ ‎исчезновения ‎человечества.


Мы‏ ‎живём ‎в‏ ‎уникальный ‎момент ‎истории ‎— ‎так‏ ‎называемое‏ ‎«космическое ‎окно‏ ‎возможностей». ‎Наши‏ ‎технологии ‎достаточно ‎развиты ‎для ‎начала‏ ‎космической‏ ‎экспансии,‏ ‎при ‎этом‏ ‎уровень ‎потребления‏ ‎ресурсов ‎на‏ ‎Земле‏ ‎пока ‎не‏ ‎привёл ‎к ‎необратимому ‎разрушению ‎планеты.‏ ‎Просто ‎идеально!

В‏ ‎медиакультуре‏ ‎(«ВАЛЛ-И» ‎2008 ‎года‏ ‎или ‎«Затерянные‏ ‎в ‎космосе» ‎1998 ‎года,‏ ‎«Интерстеллар»‏ ‎2014, ‎«Элизиум»‏ ‎2013, ‎«Безмолвный‏ ‎бег» ‎1972, ‎«После ‎нашей ‎эры»‏ ‎2013‏ ‎и ‎т.‏ ‎п.) ‎человечество‏ ‎сталкивается ‎с ‎экологической ‎катастрофой ‎либо‏ ‎настолько‏ ‎захламляет‏ ‎планету ‎и‏ ‎истощает ‎её‏ ‎ресурсы, ‎что‏ ‎лучший‏ ‎способ ‎выживания‏ ‎— ‎свалить ‎куда-нибудь ‎подальше.

Да, ‎безусловно,‏ ‎в ‎той‏ ‎же‏ ‎«Экспансии» ‎(The ‎Expanse,‏ ‎сериал), ‎основанном‏ ‎на ‎одноимённой ‎серии ‎книг:‏ ‎Земля‏ ‎страдает ‎от‏ ‎перенаселения, ‎экологических‏ ‎проблем ‎и ‎истощения ‎ресурсов, ‎что‏ ‎стало‏ ‎главной ‎причиной‏ ‎активной ‎колонизации‏ ‎Марса ‎и ‎Пояса ‎астероидов.

Вот ‎только‏ ‎оно‏ ‎нам‏ ‎надо? ‎Нам‏ ‎что, ‎обязательно‏ ‎захламлять ‎свой‏ ‎дом‏ ‎для ‎того,‏ ‎чтобы ‎переехать ‎в ‎другой?


Пока ‎наша‏ ‎планета ‎еще‏ ‎дышит,‏ ‎мы ‎имеем ‎все‏ ‎шансы ‎сохранить‏ ‎её ‎экосистему ‎путем ‎начала‏ ‎космической‏ ‎экспансии ‎уже‏ ‎сегодня. ‎Однако‏ ‎это ‎окно ‎не ‎будет ‎открыто‏ ‎вечно.

Чтобы‏ ‎выжить ‎к‏ ‎2055 ‎году,‏ ‎нам ‎понадобится ‎потреблять ‎вдвое ‎больше‏ ‎углеводородных‏ ‎энергоресурсов,‏ ‎чем ‎сегодня

Перед‏ ‎нами ‎три‏ ‎пути:

  1. Путь ‎самоуничтожения:‏ ‎продолжение‏ ‎борьбы ‎за‏ ‎ограниченные ‎земные ‎ресурсы ‎приведёт ‎к‏ ‎экологическому ‎коллапсу‏ ‎или‏ ‎ядерной ‎войне ‎до‏ ‎того, ‎как‏ ‎мы ‎станем ‎космической ‎цивилизацией;
  2. Путь‏ ‎стагнации:‏ ‎избегая ‎рисков,‏ ‎мы ‎отказываемся‏ ‎от ‎космической ‎экспансии, ‎обрекая ‎себя‏ ‎на‏ ‎медленное ‎угасание‏ ‎в ‎пределах‏ ‎одной ‎планеты;

Наша ‎цивилизация ‎погибнет ‎уже‏ ‎через‏ ‎30‏ ‎лет. ‎Это‏ ‎научно ‎обосновали‏ ‎ещё ‎полвека‏ ‎назад…

3. Путь‏ ‎к ‎звёздам:‏ ‎преодолев ‎национальные, ‎экономические ‎и ‎идеологические‏ ‎барьеры, ‎мы‏ ‎создаём‏ ‎устойчивую ‎многопланетную ‎цивилизацию‏ ‎с ‎потенциалом‏ ‎существования ‎на ‎протяжении ‎миллионов‏ ‎лет;


Чтобы‏ ‎третий ‎путь‏ ‎стал ‎реальностью,‏ ‎мы ‎должны ‎переосмыслить ‎наши ‎экономические‏ ‎модели,‏ ‎политические ‎системы‏ ‎и ‎культурные‏ ‎парадигмы. ‎Мы ‎должны ‎научиться ‎мыслить‏ ‎не‏ ‎избирательными‏ ‎циклами, ‎а‏ ‎эпохами; ‎не‏ ‎национальными ‎интересами,‏ ‎а‏ ‎интересами ‎вида;‏ ‎не ‎квартальными ‎отчётами, ‎а ‎судьбами‏ ‎поколений.

Экономика, ‎основанная‏ ‎не‏ ‎на ‎борьбе ‎за‏ ‎убывающие ‎ресурсы,‏ ‎а ‎на ‎создании ‎беспрецедентных‏ ‎возможностей.‏ ‎Политика, ‎ориентированная‏ ‎не ‎на‏ ‎краткосрочные ‎национальные ‎интересы, ‎а ‎на‏ ‎долгосрочное‏ ‎выживание ‎и‏ ‎процветание ‎всего‏ ‎человечества. ‎Культура, ‎черпающая ‎вдохновение ‎не‏ ‎в‏ ‎мелких‏ ‎земных ‎конфликтах,‏ ‎а ‎в‏ ‎величественной ‎перспективе‏ ‎космического‏ ‎будущего.

Все ‎это‏ ‎возможно, ‎если ‎мы ‎найдём ‎в‏ ‎себе ‎мудрость‏ ‎поднять‏ ‎глаза ‎от ‎земли‏ ‎к ‎звездам.

«Мы‏ ‎можем ‎быть ‎первым ‎поколением,‏ ‎которое‏ ‎начнёт ‎межпланетную‏ ‎историю ‎человечества,‏ ‎или ‎последним ‎поколением ‎земной ‎цивилизации.‏ ‎Выбор‏ ‎за ‎нами»,‏ ‎— ‎заключает‏ ‎астронавт ‎Базз ‎Олдрин, ‎один ‎из‏ ‎первых‏ ‎людей,‏ ‎ступивших ‎(или‏ ‎нет) ‎на‏ ‎Луну.

В ‎конечном‏ ‎счёте,‏ ‎космос ‎—‏ ‎это ‎не ‎просто ‎направление ‎для‏ ‎исследований ‎или‏ ‎сфера‏ ‎экономической ‎деятельности. ‎Это‏ ‎зеркало, ‎в‏ ‎котором ‎мы ‎видим ‎себя‏ ‎с‏ ‎новой ‎перспективы.‏ ‎Это ‎вызов,‏ ‎требующий ‎лучших ‎качеств ‎нашего ‎вида.‏ ‎Это‏ ‎путь, ‎который‏ ‎может ‎привести‏ ‎нас ‎к ‎звёздам ‎или ‎напомнить‏ ‎о‏ ‎нашей‏ ‎хрупкости.

Вселенная ‎молчаливо‏ ‎ждёт. ‎Мы‏ ‎должны ‎решить,‏ ‎станем‏ ‎ли ‎мы‏ ‎цивилизацией, ‎достойной ‎этого ‎бескрайнего ‎космоса,‏ ‎или ‎останемся‏ ‎лишь‏ ‎мимолетной ‎искрой ‎разума‏ ‎на ‎одной‏ ‎из ‎бесчисленных ‎планет.

Когда ‎космонавты‏ ‎возвращаются‏ ‎из ‎космоса,‏ ‎они ‎часто‏ ‎описывают ‎трансформирующий ‎опыт, ‎который ‎меняет‏ ‎их‏ ‎навсегда. ‎Они‏ ‎видят ‎Землю‏ ‎без ‎границ, ‎хрупкой ‎и ‎единой‏ ‎в‏ ‎бескрайней‏ ‎черноте ‎космоса.‏ ‎Этот ‎«эффект‏ ‎обзора» ‎содержит‏ ‎в‏ ‎себе ‎ключ‏ ‎к ‎пониманию ‎нашего ‎настоящего ‎положения‏ ‎и ‎будущего‏ ‎пути.

История‏ ‎человечества ‎полна ‎критических‏ ‎моментов ‎выбора,‏ ‎определивших ‎дальнейшую ‎судьбу ‎цивилизаций.‏ ‎Решение‏ ‎китайских ‎императоров‏ ‎Мин ‎свернуть‏ ‎морские ‎экспедиции ‎привело ‎к ‎столетиям‏ ‎отставания.‏ ‎Наоборот, ‎инвестиции‏ ‎Испании ‎и‏ ‎Португалии ‎в ‎морские ‎исследования ‎заложили‏ ‎основу‏ ‎их‏ ‎будущего ‎процветания.

Сегодня‏ ‎мы ‎находимся‏ ‎на ‎аналогичной‏ ‎развилке,‏ ‎но ‎в‏ ‎планетарном ‎масштабе. ‎Решения, ‎принимаемые ‎в‏ ‎ближайшие ‎десятилетия‏ ‎относительно‏ ‎космической ‎экспансии, ‎определят‏ ‎всю ‎дальнейшую‏ ‎траекторию ‎человеческой ‎цивилизации.

Астрофизик ‎Карл‏ ‎Саган‏ ‎писал: ‎«Мы‏ ‎стоим ‎на‏ ‎берегу ‎космического ‎океана. ‎Мы ‎знаем,‏ ‎что‏ ‎если ‎будем‏ ‎достаточно ‎умны‏ ‎и ‎храбры, ‎то ‎однажды ‎отправимся‏ ‎к‏ ‎звёздам.‏ ‎Эта ‎перспектива‏ ‎не ‎требует‏ ‎мистицизма ‎или‏ ‎новой‏ ‎физики, ‎но‏ ‎требует ‎величия ‎духа.»

Когда ‎первые ‎поселенцы‏ ‎покидали ‎Африку‏ ‎70‏ ‎000 ‎лет ‎назад,‏ ‎они ‎не‏ ‎могли ‎представить ‎цивилизации, ‎которые‏ ‎их‏ ‎потомки ‎создадут‏ ‎по ‎всему‏ ‎миру. ‎Когда ‎первые ‎мореплаватели ‎отправлялись‏ ‎в‏ ‎неизведанные ‎воды,‏ ‎они ‎не‏ ‎знали ‎континентов, ‎которые ‎откроют. ‎Точно‏ ‎так‏ ‎же‏ ‎мы ‎не‏ ‎можем ‎в‏ ‎полной ‎мере‏ ‎предвидеть,‏ ‎какие ‎формы‏ ‎примет ‎человеческая ‎цивилизация, ‎расселившись ‎по‏ ‎Солнечной ‎системе‏ ‎и,‏ ‎возможно, ‎за ‎её‏ ‎пределами.

Какой ‎смысл‏ ‎в ‎бесконечной ‎Вселенной, ‎если‏ ‎перемещение‏ ‎в ‎ней‏ ‎ограничено ‎скоростью‏ ‎света?

Но ‎одно ‎можно ‎сказать ‎с‏ ‎уверенностью:‏ ‎общества, ‎которые‏ ‎примут ‎космическую‏ ‎перспективу, ‎которые ‎адаптируют ‎свои ‎экономические‏ ‎модели,‏ ‎политические‏ ‎системы ‎и‏ ‎культурные ‎парадигмы‏ ‎к ‎реальности‏ ‎космической‏ ‎эры, ‎будут‏ ‎определять ‎дальнейшую ‎историю ‎нашего ‎вида.

Прямо‏ ‎сейчас, ‎пока‏ ‎вы‏ ‎читаете ‎эти ‎строки,‏ ‎несколько ‎тысяч‏ ‎человек ‎по ‎всему ‎миру‏ ‎работают‏ ‎над ‎технологиями,‏ ‎которые ‎сделают‏ ‎человечество ‎космической ‎цивилизацией. ‎От ‎инженеров‏ ‎SpaceX‏ ‎и ‎китайской‏ ‎космической ‎программы‏ ‎до ‎ученых ‎NASA ‎и ‎российского‏ ‎Роскосмоса,‏ ‎от‏ ‎стартапов, ‎разрабатывающих‏ ‎новые ‎двигательные‏ ‎установки, ‎до‏ ‎студентов,‏ ‎проектирующих ‎марсианские‏ ‎колонии ‎— ‎все ‎они ‎пишут‏ ‎следующую ‎главу‏ ‎человеческой‏ ‎истории.

Почему ‎полёты ‎к‏ ‎звездам ‎противоречат‏ ‎здравому ‎смыслу? ‎Высокоразвитые ‎цивилизации‏ ‎не‏ ‎полетят ‎«заселять‏ ‎галактику»

И ‎принципиальный‏ ‎вопрос ‎состоит ‎не ‎в ‎том,‏ ‎станем‏ ‎ли ‎мы‏ ‎космической ‎цивилизацией‏ ‎(если ‎мы ‎выживем ‎как ‎вид,‏ ‎то‏ ‎это‏ ‎почти ‎неизбежно),‏ ‎а ‎в‏ ‎том, ‎какой‏ ‎моральный,‏ ‎философский ‎и‏ ‎экономический ‎фундамент ‎мы ‎заложим ‎для‏ ‎этой ‎новой‏ ‎фазы‏ ‎нашего ‎существования.

Будет ‎ли‏ ‎космическая ‎экспансия‏ ‎руководствоваться ‎теми ‎же ‎недальновидными‏ ‎принципами,‏ ‎что ‎привели‏ ‎к ‎экономическим‏ ‎кризисам ‎на ‎Земле? ‎Или ‎мы‏ ‎создадим‏ ‎новую ‎экономическую‏ ‎парадигму, ‎основанную‏ ‎на ‎долгосрочной ‎устойчивости ‎и ‎благополучии‏ ‎всего‏ ‎человечества?


Будем‏ ‎ли ‎мы‏ ‎переносить ‎в‏ ‎космос ‎старые‏ ‎национальные‏ ‎конфликты? ‎Или‏ ‎создадим ‎новые ‎формы ‎сотрудничества, ‎отражающие‏ ‎единство ‎всех‏ ‎землян‏ ‎перед ‎лицом ‎бесконечной‏ ‎Вселенной?

Будем ‎ли‏ ‎мы ‎видеть ‎в ‎космосе‏ ‎только‏ ‎ресурсы ‎для‏ ‎эксплуатации? ‎Или‏ ‎также ‎найдём ‎в ‎нем ‎источник‏ ‎научного‏ ‎знания, ‎эстетического‏ ‎вдохновения ‎и‏ ‎философского ‎осмысления?

Космос ‎— ‎это ‎зеркало,‏ ‎в‏ ‎котором‏ ‎мы ‎видим‏ ‎самих ‎себя.‏ ‎И ‎то,‏ ‎что‏ ‎мы ‎в‏ ‎нем ‎увидим, ‎зависит ‎от ‎решений,‏ ‎которые ‎мы‏ ‎принимаем‏ ‎сегодня.

Наше ‎будущее ‎среди‏ ‎звёзд ‎начинается‏ ‎здесь ‎и ‎сейчас, ‎с‏ ‎нового‏ ‎понимания ‎нашего‏ ‎места ‎во‏ ‎Вселенной ‎и ‎нашей ‎ответственности ‎за‏ ‎будущее‏ ‎не ‎только‏ ‎человечества, ‎но,‏ ‎возможно, ‎всей ‎разумной ‎жизни ‎во‏ ‎Вселенной…

Вот‏ ‎и‏ ‎подумайте ‎на‏ ‎досуге…


Читать: 16+ мин
logo Кочетов Алексей

От колыбели — к звёздам. ЧАСТЬ 2: космические перспективы будущего…

Когда ‎в‏ ‎2015 ‎году ‎мировые ‎лидеры ‎подписывали‏ ‎Парижское ‎соглашение‏ ‎по‏ ‎климату, ‎они, ‎сами‏ ‎того ‎не‏ ‎понимая, ‎признали ‎необходимость ‎планетарного‏ ‎мышления.‏ ‎Однако ‎даже‏ ‎этот ‎шаг‏ ‎был ‎ограничен ‎земными ‎рамками. ‎Космическая‏ ‎перспектива‏ ‎требует ‎гораздо‏ ‎более ‎радикального‏ ‎пересмотра ‎базовых ‎экономических ‎принципов.

Современная ‎экономическая‏ ‎теория‏ ‎не‏ ‎готова ‎к‏ ‎миру ‎изобилия.‏ ‎Мы ‎настолько‏ ‎привыкли‏ ‎мыслить ‎в‏ ‎категориях ‎дефицита, ‎что ‎сама ‎идея‏ ‎преодоления ‎ресурсных‏ ‎ограничений‏ ‎кажется ‎утопией…

Рабочие ‎места‏ ‎будущего ‎не‏ ‎будут ‎сосредоточены ‎в ‎традиционных‏ ‎отраслях:

  • Менее‏ ‎0,5% ‎населения‏ ‎будет ‎занято‏ ‎в ‎сельском ‎хозяйстве ‎(сегодня ‎—‏ ‎около‏ ‎27% ‎в‏ ‎мировом ‎масштабе);
  • Производство‏ ‎будет ‎почти ‎полностью ‎автоматизировано;
  • 70% новых ‎профессий‏ ‎будут‏ ‎связаны‏ ‎с ‎областями,‏ ‎которые ‎сегодня‏ ‎либо ‎не‏ ‎существуют,‏ ‎либо ‎находятся‏ ‎в ‎зачаточном ‎состоянии;

И ‎это ‎не‏ ‎футурология, ‎а‏ ‎экономическая‏ ‎неизбежность ‎при ‎условии‏ ‎развития ‎космических‏ ‎технологий.

На ‎основе ‎опубликованных ‎исследований‏ ‎и‏ ‎работ ‎по‏ ‎ожидаемым ‎сдвигам‏ ‎в ‎структуре ‎занятости ‎и ‎акцентов‏ ‎в‏ ‎образовании ‎под‏ ‎влиянием ‎глубокой‏ ‎автоматизации ‎(стимулируемой, ‎в ‎том ‎числе,‏ ‎космическими‏ ‎технологиями)‏ ‎и ‎развития‏ ‎космической ‎экономики,‏ ‎я ‎вычленил‏ ‎расчетные‏ ‎данные, ‎иллюстрирующие‏ ‎оценки ‎трансформации ‎рынка ‎труда ‎и‏ ‎образования ‎под‏ ‎влиянием‏ ‎автоматизации ‎и ‎космоса:


В‏ ‎мире, ‎где‏ ‎ключевым ‎ресурсом ‎становится ‎не‏ ‎нефть‏ ‎или ‎газ,‏ ‎а ‎интеллектуальный‏ ‎капитал, ‎способный ‎организовать ‎освоение ‎космоса,‏ ‎образование‏ ‎превращается ‎из‏ ‎социальной ‎услуги‏ ‎в ‎стратегический ‎императив ‎национальной ‎безопасности.

Страны,‏ ‎инвестирующие‏ ‎в‏ ‎STEM-образование ‎(наука,‏ ‎технологии, ‎инженерия,‏ ‎математика), ‎уже‏ ‎получают‏ ‎критическое ‎преимущество:

  • Южная‏ ‎Корея ‎увеличила ‎долю ‎выпускников ‎в‏ ‎области ‎точных‏ ‎наук‏ ‎на ‎82% ‎за‏ ‎последние ‎20‏ ‎лет ‎и ‎стала ‎технологическим‏ ‎лидером;
  • США‏ ‎и ‎Россия,‏ ‎несмотря ‎на‏ ‎огромные ‎ресурсы, ‎теряют ‎позиции ‎из-за‏ ‎недостаточного‏ ‎внимания ‎к‏ ‎техническому ‎образованию;
  • Китай‏ ‎ежегодно ‎выпускает ‎в ‎8 ‎раз‏ ‎больше‏ ‎инженеров,‏ ‎чем ‎США,‏ ‎закладывая ‎основу‏ ‎будущего ‎технологического‏ ‎доминирования.

В‏ ‎России ‎мы‏ ‎вообще ‎умудрились ‎создать ‎очередной ‎парадокс:‏ ‎для ‎страны,‏ ‎регулярно‏ ‎занимающей ‎лидирующие ‎позиции‏ ‎в ‎международных‏ ‎олимпиадах ‎по ‎математике, ‎физике‏ ‎и‏ ‎программированию, ‎характерен‏ ‎острый ‎дефицит‏ ‎квалифицированных ‎инженерных ‎кадров ‎в ‎промышленности.‏ ‎Разрешение‏ ‎этого ‎противоречия‏ ‎— ‎одна‏ ‎из ‎ключевых ‎задач ‎образовательной ‎и‏ ‎экономической‏ ‎политики,‏ ‎подробнее ‎об‏ ‎этом ‎я‏ ‎писал ‎тут:

Будущее‏ ‎России:‏ ‎от ‎экспорта‏ ‎сырья ‎к ‎национальному ‎благосостоянию

Сегодня ‎образование‏ ‎— ‎это‏ ‎не‏ ‎только ‎социальный ‎лифт‏ ‎для ‎отдельных‏ ‎граждан, ‎но ‎и ‎ракета-носитель‏ ‎для‏ ‎всей ‎нации.

Земля‏ ‎— ‎единственный‏ ‎дом ‎человечества, ‎и ‎он ‎уязвим‏ ‎не‏ ‎только ‎перед‏ ‎внутренними ‎угрозами‏ ‎(изменение ‎климата, ‎ядерная ‎война), ‎но‏ ‎и‏ ‎перед‏ ‎внешними ‎(астероиды,‏ ‎солнечные ‎вспышки).‏ ‎Классическая ‎экономика‏ ‎не‏ ‎имеет ‎механизмов‏ ‎для ‎адекватной ‎оценки ‎подобных ‎рисков.

Астероид‏ ‎диаметром ‎10‏ ‎км,‏ ‎подобный ‎тому, ‎что‏ ‎уничтожил ‎динозавров,‏ ‎встречается ‎с ‎Землей ‎примерно‏ ‎раз‏ ‎в ‎100‏ ‎миллионов ‎лет.‏ ‎Вероятность ‎в ‎любой ‎конкретный ‎год‏ ‎—‏ ‎около ‎0,000001%.‏ ‎Казалось ‎бы,‏ ‎ничтожно ‎мало. ‎Но ‎потенциальный ‎ущерб‏ ‎—‏ ‎исчезновение‏ ‎цивилизации:

Может ‎ли‏ ‎сегодня ‎человечество‏ ‎спасти ‎планету‏ ‎от‏ ‎падения ‎астероида?

Рискнем?

Как‏ ‎экономически ‎обосновать ‎инвестиции ‎в ‎защиту‏ ‎от ‎таких‏ ‎редких,‏ ‎но ‎катастрофических ‎событий?‏ ‎Классические ‎модели‏ ‎дисконтирования ‎будущих ‎рисков ‎здесь‏ ‎не‏ ‎работают.

«Мы ‎тратим‏ ‎триллионы ‎на‏ ‎страхование ‎от ‎относительно ‎небольших ‎рисков‏ ‎и‏ ‎почти ‎ничего‏ ‎— ‎на‏ ‎предотвращение ‎экзистенциальных ‎угроз. ‎Это ‎не‏ ‎просто‏ ‎нерационально‏ ‎— ‎это‏ ‎безумно», ‎—‏ ‎отмечает ‎философ‏ ‎Ник‏ ‎Бостром, ‎основатель‏ ‎Института ‎будущего ‎человечества ‎в ‎Оксфорде.

Если‏ ‎рассматривать ‎человеческую‏ ‎цивилизацию‏ ‎как ‎инвестиционный ‎портфель,‏ ‎то ‎размещение‏ ‎всех ‎активов ‎на ‎одной‏ ‎планете‏ ‎— ‎это‏ ‎катастрофическое ‎отсутствие‏ ‎диверсификации. ‎Любой ‎финансовый ‎консультант ‎назвал‏ ‎бы‏ ‎такую ‎стратегию,‏ ‎мягко ‎говоря,‏ ‎недопустимо ‎рискованной.

Создание ‎самоподдерживающейся ‎колонии ‎на‏ ‎Марсе‏ ‎будет‏ ‎стоить ‎триллионы‏ ‎долларов. ‎Но‏ ‎что, ‎если‏ ‎оценить‏ ‎потенциальные ‎выгоды:

  • Страховка‏ ‎от ‎глобальных ‎катастроф ‎на ‎Земле;
  • Новые‏ ‎ресурсы ‎и‏ ‎территории‏ ‎для ‎развития;
  • Технологический ‎прорыв,‏ ‎сравнимый ‎с‏ ‎Промышленной ‎революцией;
  • Психологический ‎эффект ‎«новой‏ ‎границы»‏ ‎для ‎всего‏ ‎человечества.

Уже ‎с‏ ‎такой ‎точки ‎зрения ‎затраты ‎внезапно‏ ‎начинают‏ ‎выглядеть ‎разумной‏ ‎инвестицией, ‎а‏ ‎не ‎блажью.

Симптоматично, ‎что ‎миллиардеры, ‎инвестирующие‏ ‎в‏ ‎космос,‏ ‎часто ‎говорят‏ ‎о ‎перспективах‏ ‎человечества ‎в‏ ‎целом,‏ ‎а ‎не‏ ‎только ‎о ‎прибыли ‎своих ‎компаний.

Уже‏ ‎сегодня ‎формируются‏ ‎зачатки‏ ‎космической ‎экономики:

  • Начались ‎работы‏ ‎над ‎оценкой‏ ‎потенциала ‎добычи ‎ресурсов ‎с‏ ‎астероидов‏ ‎в ‎триллионы‏ ‎долларов;
  • Разрабатываются ‎космические‏ ‎транспортные ‎системы, ‎способную ‎доставлять ‎грузы‏ ‎между‏ ‎планетами;
  • Исследуется ‎возможность‏ ‎производства ‎топлива‏ ‎и ‎строительных ‎материалов ‎на ‎Луне‏ ‎и‏ ‎Марсе;
  • Разрабатывается‏ ‎космическая ‎ядерная‏ ‎энергетика.


Экономическая ‎логика‏ ‎космической ‎экспансии‏ ‎неумолима:‏ ‎первый, ‎кто‏ ‎сумеет ‎наладить ‎добычу ‎ресурсов ‎в‏ ‎космосе, ‎получит‏ ‎такое‏ ‎преимущество, ‎которое ‎сделает‏ ‎земные ‎экономические‏ ‎войны ‎бессмысленными.

«Первый ‎триллионер ‎будет‏ ‎тем,‏ ‎кто ‎научится‏ ‎добывать ‎ресурсы‏ ‎астероидов», ‎— ‎предсказывает ‎астрофизик ‎Нил‏ ‎Деграсс‏ ‎Тайсон.

Исторически ‎космические‏ ‎программы ‎стимулировали‏ ‎инновации, ‎которые ‎впоследствии ‎находили ‎применение‏ ‎на‏ ‎Земле:

  • Солнечные‏ ‎батареи, ‎первоначально‏ ‎разработанные ‎для‏ ‎спутников, ‎теперь‏ ‎помогают‏ ‎простым ‎людям;
  • Водоочистные‏ ‎технологии, ‎созданные ‎для ‎космических ‎станций,‏ ‎обеспечивают ‎чистой‏ ‎водой‏ ‎миллионы ‎людей;
  • Медицинские ‎приборы,‏ ‎разработанные ‎для‏ ‎мониторинга ‎космонавтов, ‎спасают ‎жизни‏ ‎в‏ ‎больницах ‎по‏ ‎всему ‎миру;
По‏ ‎оценкам ‎NASA, ‎каждый ‎доллар, ‎вложенный‏ ‎в‏ ‎космическую ‎программу,‏ ‎возвращает ‎в‏ ‎экономику ‎от ‎7 ‎до ‎14‏ ‎долларов‏ ‎через‏ ‎коммерциализацию ‎технологий.

«Космос‏ ‎— ‎это‏ ‎не ‎трата‏ ‎денег.‏ ‎Это ‎инвестиция‏ ‎в ‎нашу ‎способность ‎решать ‎проблемы‏ ‎здесь, ‎на‏ ‎Земле»,‏ ‎— ‎отмечают ‎многие‏ ‎космонавты.

Когда ‎в‏ ‎2001 ‎году ‎Деннис ‎Тито‏ ‎заплатил‏ ‎20 ‎миллионов‏ ‎долларов ‎за‏ ‎полёт ‎на ‎МКС, ‎это ‎казалось‏ ‎экстравагантной‏ ‎причудой ‎миллиардера.


Сегодня‏ ‎стоимость ‎суборбитального‏ ‎полёта ‎снизилась ‎до ‎450 ‎тысяч‏ ‎долларов,‏ ‎а‏ ‎объём ‎рынка‏ ‎космического ‎туризма‏ ‎к ‎2040‏ ‎году‏ ‎может ‎достичь‏ ‎300 ‎миллиардов ‎долларов.


Это ‎будет ‎уже‏ ‎не ‎просто‏ ‎новая‏ ‎индустрия ‎развлечений ‎—‏ ‎это ‎способ‏ ‎сделать ‎космическую ‎перспективу ‎доступной‏ ‎для‏ ‎гораздо ‎более‏ ‎широкого ‎круга‏ ‎лиц, ‎принимающих ‎решения.

«Каждый ‎человек, ‎будь‏ ‎он‏ ‎бизнесменом ‎или‏ ‎политиком, ‎увидевший‏ ‎Землю ‎из ‎космоса, ‎возвращается ‎другим‏ ‎человеком‏ ‎—‏ ‎с ‎другими‏ ‎приоритетами ‎и‏ ‎другим ‎пониманием‏ ‎проблем».‏ ‎Это ‎уже‏ ‎доказанный ‎факт.

Одна ‎из ‎главных ‎проблем‏ ‎современной ‎экономики‏ ‎—‏ ‎короткий ‎горизонт ‎планирования.‏ ‎Публичные ‎компании‏ ‎зациклены ‎на ‎квартальных ‎отчётах,‏ ‎политики‏ ‎— ‎на‏ ‎следующих ‎выборах.‏ ‎В ‎результате ‎долгосрочные ‎инвестиции, ‎особенно‏ ‎в‏ ‎фундаментальную ‎науку‏ ‎и ‎инфраструктуру,‏ ‎систематически ‎недофинансируются.

Космические ‎проекты, ‎по ‎определению,‏ ‎требуют‏ ‎долгосрочного‏ ‎планирования:

  • Программа ‎«Аполлон»‏ ‎и ‎Лунная‏ ‎программа ‎СССР‏ ‎была‏ ‎рассчитана ‎на‏ ‎десятилетие;
  • Марсианская ‎экспедиция ‎займёт ‎как ‎минимум‏ ‎15 ‎лет‏ ‎подготовки;
  • Колонизация‏ ‎других ‎планет ‎—‏ ‎это ‎проект‏ ‎на ‎столетия.

Сегодня ‎длительные ‎эксперименты‏ ‎по‏ ‎моделированию ‎и‏ ‎симуляции ‎полета‏ ‎на ‎Марс ‎и ‎подобных ‎космических‏ ‎путешествий‏ ‎активно ‎ведутся‏ ‎в ‎мире.

Проект‏ ‎SIRIUS: ‎международный ‎проект, ‎проводимый ‎в‏ ‎Москве‏ ‎на‏ ‎базе ‎Наземного‏ ‎Экспериментального ‎Комплекса‏ ‎(НЭК) ‎ИМБП‏ ‎РАН.‏ ‎Это ‎серия‏ ‎изоляционных ‎экспериментов ‎разной ‎длительности ‎(от‏ ‎нескольких ‎недель‏ ‎до‏ ‎года), ‎имитирующих ‎различные‏ ‎этапы ‎полета‏ ‎к ‎Луне ‎или ‎Марсу.‏ ‎В‏ ‎проекте ‎активно‏ ‎участвует ‎NASA‏ ‎и ‎специалисты ‎из ‎других ‎стран.‏ ‎SIRIUS‏ ‎является ‎продолжением‏ ‎и ‎развитием‏ ‎идей ‎проекта ‎«Марс-500».


Проект ‎«Марс-500» ‎—‏ ‎один‏ ‎из‏ ‎самых ‎известных‏ ‎и ‎масштабных‏ ‎экспериментов ‎в‏ ‎мире,‏ ‎проведенный ‎Институтом‏ ‎медико-биологических ‎проблем ‎Российской ‎академии ‎наук‏ ‎совместно ‎с‏ ‎Европейским‏ ‎космическим ‎агентством ‎(ESA)‏ ‎и ‎участием‏ ‎Китая. ‎В ‎2010–2011 ‎годах‏ ‎международный‏ ‎экипаж ‎из‏ ‎шести ‎человек‏ ‎провел ‎520 ‎суток ‎в ‎полной‏ ‎изоляции‏ ‎в ‎наземном‏ ‎экспериментальном ‎комплексе,‏ ‎имитируя ‎полный ‎цикл ‎полета ‎на‏ ‎Марс‏ ‎(перелет‏ ‎туда, ‎работа‏ ‎на ‎«поверхности»,‏ ‎возвращение). ‎Эксперимент‏ ‎был‏ ‎максимально ‎приближен‏ ‎к ‎реальному ‎пилотируемому ‎полёту ‎на‏ ‎Марс ‎с‏ ‎возвращением‏ ‎на ‎Землю.


Проект ‎CHAPEA:‏ ‎программа ‎NASA,‏ ‎стартовавшая ‎в ‎2023 ‎году.‏ ‎Экипажи‏ ‎из ‎четырех‏ ‎человек ‎проводят‏ ‎год ‎в ‎специально ‎построенном ‎3D-печатном‏ ‎модуле‏ ‎«Mars ‎Dune‏ ‎Alpha» ‎в‏ ‎Космическом ‎центре ‎имени ‎Джонсона ‎в‏ ‎Хьюстоне.‏ ‎Цель‏ ‎— ‎максимально‏ ‎реалистично ‎смоделировать‏ ‎жизнь ‎и‏ ‎работу‏ ‎на ‎поверхности‏ ‎Марса, ‎включая ‎выходы ‎в ‎«скафандрах»,‏ ‎задержки ‎связи,‏ ‎ресурсные‏ ‎ограничения ‎и ‎научную‏ ‎деятельность. ‎Планируется‏ ‎несколько ‎таких ‎годичных ‎миссий.


Проект‏ ‎HERA:‏ ‎это ‎компактный‏ ‎модуль, ‎где‏ ‎экипаж ‎проводят ‎более ‎короткие ‎миссии‏ ‎(обычно‏ ‎около ‎45‏ ‎дней), ‎имитирующие‏ ‎различные ‎этапы ‎космических ‎полетов ‎(к‏ ‎астероиду,‏ ‎к‏ ‎Марсу).



Проект ‎HI-SEAS:‏ ‎расположен ‎на‏ ‎склонах ‎вулкана‏ ‎Мауна-Лоа‏ ‎на ‎Гавайях.‏ ‎Изначально ‎фокусировался ‎на ‎длительных ‎миссиях‏ ‎(до ‎года)‏ ‎в‏ ‎изолированном ‎куполе, ‎имитируя‏ ‎условия ‎Марса.‏ ‎Известен ‎исследованиями ‎в ‎области‏ ‎психологии‏ ‎экипажа ‎и‏ ‎подбора ‎продуктов‏ ‎питания. ‎После ‎нескольких ‎успешных ‎миссий‏ ‎под‏ ‎эгидой ‎NASA‏ ‎проект ‎продолжает‏ ‎работу ‎с ‎фокусом ‎на ‎лунные‏ ‎симуляции.


Проект‏ ‎Yuegong-1:‏ ‎экспериментальный ‎объект‏ ‎в ‎Университете‏ ‎Бэйхан ‎(Пекин).‏ ‎Это‏ ‎герметичная ‎лаборатория‏ ‎с ‎замкнутой ‎системой ‎жизнеобеспечения ‎для‏ ‎отработки ‎технологии‏ ‎и‏ ‎экспериментов ‎по ‎изоляции‏ ‎(до ‎370‏ ‎дней) ‎с ‎полным ‎циклом‏ ‎регенерации‏ ‎воздуха, ‎воды‏ ‎и ‎выращивания‏ ‎пищи, ‎напрямую ‎применимы ‎и ‎к‏ ‎марсианским‏ ‎миссиям. ‎Основной‏ ‎фокус ‎—‏ ‎проверка ‎и ‎совершенствование ‎систем ‎жизнеобеспечения‏ ‎замкнутого‏ ‎цикла.


Европейское‏ ‎космическое ‎агентство‏ ‎(ESA) ‎ранее‏ ‎являлась ‎ключевым‏ ‎партнером‏ ‎в ‎российском‏ ‎проекте ‎SIRIUS. ‎Станция ‎«Конкордия» ‎(Антарктида),‏ ‎хотя ‎это‏ ‎не‏ ‎специализированный ‎марсианский ‎симулятор,‏ ‎франко-итальянская ‎антарктическая‏ ‎станция ‎«Конкордия» ‎используется ‎ESA‏ ‎как‏ ‎аналог ‎для‏ ‎изучения ‎влияния‏ ‎экстремальной ‎изоляции, ‎темноты ‎полярной ‎ночи‏ ‎и‏ ‎низких ‎температур‏ ‎на ‎психологию‏ ‎и ‎физиологию ‎человека, ‎что ‎очень‏ ‎релевантно‏ ‎для‏ ‎длительных ‎космических‏ ‎полетов.


Проект ‎AMADEE:‏ ‎это ‎программа‏ ‎полевых‏ ‎аналоговых ‎симуляций‏ ‎Марса. ‎Австрийский ‎космический ‎форум ‎(OeWF)‏ ‎организует ‎экспедиции‏ ‎(например,‏ ‎в ‎пустынях ‎Омана,‏ ‎Израиля) ‎с‏ ‎участием ‎аналоговых ‎астронавтов ‎в‏ ‎скафандрах-прототипах,‏ ‎которые ‎проводят‏ ‎геологические, ‎биологические‏ ‎и ‎технические ‎эксперименты ‎в ‎условиях,‏ ‎имитирующих‏ ‎марсианскую ‎поверхность.‏ ‎Фокус ‎здесь‏ ‎больше ‎на ‎отработке ‎внекорабельной ‎деятельности‏ ‎и‏ ‎взаимодействии‏ ‎с ‎роверами,‏ ‎чем ‎на‏ ‎длительной ‎изоляции‏ ‎внутри‏ ‎модуля.


Mars ‎Desert‏ ‎Research ‎Station ‎(MDRS): ‎расположена ‎в‏ ‎пустыне ‎штата‏ ‎Юта,‏ ‎США. ‎Управляется ‎частной‏ ‎некоммерческой ‎организацией‏ ‎Mars ‎Society. ‎Здесь ‎проводятся‏ ‎короткие‏ ‎(обычно ‎2-3‏ ‎недели) ‎ротационные‏ ‎миссии ‎международных ‎экипажей ‎в ‎аналоговой‏ ‎среде,‏ ‎имитирующей ‎базу‏ ‎на ‎Марсе.‏ ‎Проект ‎существует ‎давно ‎и ‎позволяет‏ ‎отрабатывать‏ ‎различные‏ ‎научные ‎и‏ ‎операционные ‎задачи.


Аналогичная‏ ‎станция ‎FMARS‏ ‎существует‏ ‎в ‎Арктике‏ ‎(Канада), ‎но ‎используется ‎реже ‎из-за‏ ‎логистики.


Космическая ‎перспектива‏ ‎не‏ ‎просто ‎добавляет ‎новое‏ ‎измерение ‎к‏ ‎существующим ‎экономическим ‎моделям ‎—‏ ‎она‏ ‎принципиально ‎меняет‏ ‎их ‎основы.‏ ‎Мы ‎переходим ‎от ‎экономики, ‎ограниченной‏ ‎ресурсами‏ ‎одной ‎планеты,‏ ‎к ‎экономике,‏ ‎охватывающей ‎возможности ‎Солнечной ‎системы.

  • Страны, ‎которые‏ ‎первыми‏ ‎адаптируются‏ ‎к ‎этой‏ ‎новой ‎реальности,‏ ‎получат ‎преимущество‏ ‎не‏ ‎менее ‎значительное,‏ ‎чем ‎то, ‎которое ‎получили ‎европейские‏ ‎морские ‎державы‏ ‎во‏ ‎времена ‎великих ‎географических‏ ‎открытий.

На ‎основе‏ ‎исследований ‎оценки ‎масштаба ‎и‏ ‎стоимости‏ ‎ключевой ‎космической‏ ‎инфраструктуры ‎я‏ ‎сделал ‎таблицу, ‎которая ‎дает ‎представление‏ ‎о‏ ‎порядке ‎затрат‏ ‎и ‎сложности‏ ‎создания ‎основных ‎элементов ‎инфраструктуры ‎для‏ ‎освоения‏ ‎космоса.

  • Стоимости‏ ‎являются ‎грубой‏ ‎и ‎сильно‏ ‎зависят ‎от‏ ‎технологического‏ ‎прогресса.


В ‎третьей‏ ‎части ‎мы ‎рассмотрим, ‎как ‎космическая‏ ‎перспектива ‎меняет‏ ‎наше‏ ‎понимание ‎национальной ‎безопасности,‏ ‎экологии ‎и‏ ‎будущего ‎человеческой ‎цивилизации ‎в‏ ‎целом.


Читать: 15+ мин
logo Кочетов Алексей

От колыбели — к звёздам. ЧАСТЬ 1: ГРАНИЦА ПОЗНАНИЯ

В ‎1961‏ ‎году ‎человек ‎впервые ‎покинул ‎Землю,‏ ‎открыв ‎эру‏ ‎космических‏ ‎исследований. ‎Это ‎был‏ ‎триумф ‎науки,‏ ‎техники ‎и ‎человеческого ‎духа.‏ ‎Сегодня,‏ ‎спустя ‎шесть‏ ‎десятилетий, ‎мы‏ ‎погрязли ‎в ‎мелочных ‎экономических ‎спорах,‏ ‎забыв‏ ‎о ‎том,‏ ‎что ‎наша‏ ‎планета ‎— ‎лишь ‎песчинка ‎в‏ ‎бескрайнем‏ ‎космосе.


Среднее‏ ‎космическое ‎тело‏ ‎в ‎поясе‏ ‎астероидов ‎содержит‏ ‎больше‏ ‎редкоземельных ‎металлов,‏ ‎чем ‎человечество ‎добыло ‎за ‎всю‏ ‎историю. ‎Один‏ ‎небольшой‏ ‎астероид ‎может ‎«обнулить»‏ ‎все ‎экономические‏ ‎теории, ‎основанные ‎на ‎ресурсной‏ ‎ограниченности.

Как‏ ‎видим, ‎даже‏ ‎один ‎небольшой‏ ‎астероид ‎по ‎количественному ‎содержанию ‎некоторых‏ ‎металлов‏ ‎(особенно ‎никеля,‏ ‎кобальта ‎и‏ ‎платиновой ‎группы) ‎сопоставим ‎с ‎известными‏ ‎разведанными‏ ‎земными‏ ‎запасами. ‎Весь‏ ‎пояс ‎астероидов‏ ‎содержит ‎ресурсы,‏ ‎превышающие‏ ‎земные ‎в‏ ‎миллионы ‎раз.

В ‎случаи ‎чего, ‎никто‏ ‎даже ‎не‏ ‎заметит‏ ‎нашего ‎исчезновения. ‎Ведь‏ ‎в ‎масштабах‏ ‎Вселенной ‎человечество ‎— ‎статистическая‏ ‎погрешность.

  • Вселенная‏ ‎имеет ‎возраст‏ ‎13,8 ‎миллиардов‏ ‎лет;
  • Человеческой ‎цивилизации ‎около ‎10 ‎000‏ ‎лет;
  • Современной‏ ‎экономической ‎системе‏ ‎менее ‎300‏ ‎лет.
«Мы ‎подобны ‎муравьям, ‎строящим ‎муравейник‏ ‎на‏ ‎железнодорожных‏ ‎путях ‎и‏ ‎гордящихся ‎своими‏ ‎экономическими ‎достижениями»,‏ ‎—‏ ‎иронизирует ‎астрофизик‏ ‎Нил ‎Деграсс ‎Тайсон.

Национальные ‎экономики, ‎кичащиеся‏ ‎своими ‎успехами,‏ ‎напоминают‏ ‎детей, ‎хвастающихся ‎высотой‏ ‎песочных ‎замков‏ ‎на ‎берегу ‎океана. ‎Первая‏ ‎же‏ ‎волна ‎—‏ ‎будь ‎то‏ ‎пандемия, ‎климатический ‎кризис ‎или ‎астероид‏ ‎—‏ ‎может ‎смыть‏ ‎все ‎эти‏ ‎«достижения».

Что ‎означает ‎защита ‎национальных ‎интересов,‏ ‎когда‏ ‎речь‏ ‎идёт ‎о‏ ‎выживании ‎всего‏ ‎человечества? ‎Этот‏ ‎вопрос‏ ‎становится ‎всё‏ ‎более ‎актуальным ‎с ‎развитием ‎космонавтики‏ ‎и ‎с‏ ‎обсуждением‏ ‎колонизации ‎других ‎планет‏ ‎солнечной ‎системы.

«Национальные‏ ‎интересы» ‎— ‎термин ‎19‏ ‎века,‏ ‎применяемый ‎к‏ ‎реальности ‎века‏ ‎21. ‎Если ‎астероид ‎пройдёт ‎в‏ ‎опасной‏ ‎близости ‎от‏ ‎Земли, ‎никто‏ ‎не ‎спросит, ‎гражданином ‎какой ‎страны‏ ‎вы‏ ‎являетесь.‏ ‎Потому ‎подобные‏ ‎космические ‎вызовы‏ ‎требует ‎планетарного‏ ‎ответа.

В‏ ‎дальнейшем ‎развитии‏ ‎человечества ‎не ‎так ‎много ‎реалистичных‏ ‎сценариев ‎можно‏ ‎проследить,‏ ‎и ‎сегодня, ‎вот‏ ‎прям ‎исходя‏ ‎из ‎тех ‎событий, ‎которые‏ ‎мы‏ ‎имеем ‎на‏ ‎политической ‎и‏ ‎экономической ‎карте ‎мира, ‎с ‎вероятностью‏ ‎80%‏ ‎будет ‎продолжение‏ ‎ресурсных ‎войн‏ ‎на ‎Земле. ‎Как ‎результат ‎—‏ ‎истощение‏ ‎планеты‏ ‎при ‎наличии‏ ‎неиспользованных ‎космических‏ ‎возможностей. ‎Национальные‏ ‎экономики‏ ‎будут ‎бороться‏ ‎за ‎последние ‎капли ‎нефти, ‎в‏ ‎то ‎время‏ ‎как‏ ‎в ‎космосе ‎доступна‏ ‎практически ‎неограниченная‏ ‎энергия.

Как ‎насчет ‎объединение ‎человечества‏ ‎для‏ ‎космической ‎экспансии‏ ‎скажем ‎через‏ ‎20-30 ‎лет? ‎Вероятность ‎— ‎15%.‏ ‎Потенциальная‏ ‎выгода ‎превышает‏ ‎все ‎земные‏ ‎экономические ‎показатели ‎в ‎тысячи ‎раз.‏ ‎Это‏ ‎сценарий‏ ‎избытка ‎вместо‏ ‎дефицита ‎—‏ ‎фундаментальное ‎изменение‏ ‎экономической‏ ‎парадигмы. ‎Но‏ ‎кто ‎на ‎это ‎сегодня ‎способен‏ ‎пойти?

Сценарий ‎3:‏ ‎Катастрофический.‏ ‎Исчезновение ‎человечества ‎из-за‏ ‎природной ‎катастрофы‏ ‎до ‎достижения ‎многопланетного ‎статуса.‏ ‎Вероятность‏ ‎— ‎5%,‏ ‎но ‎последствия‏ ‎абсолютны. ‎Все ‎экономические ‎споры ‎становятся‏ ‎бессмысленными‏ ‎в ‎случае‏ ‎исчезновения ‎человечества.

Современные‏ ‎экономические ‎теории ‎базируются ‎на ‎предположениях,‏ ‎которые‏ ‎выглядят‏ ‎нелепо ‎в‏ ‎космическом ‎масштабе:

  1. Ограниченность‏ ‎ресурсов ‎—‏ ‎при‏ ‎наличии ‎практически‏ ‎бесконечных ‎ресурсов ‎в ‎космосе;
  2. Конкуренция ‎наций‏ ‎— ‎в‏ ‎условиях,‏ ‎когда ‎выживание ‎вида‏ ‎требует ‎кооперации;
  3. Краткосрочное‏ ‎планирование ‎— ‎в ‎мире,‏ ‎где‏ ‎значимые ‎космические‏ ‎проекты ‎занимают‏ ‎десятилетия;
  4. Рост ‎ВВП ‎как ‎главный ‎показатель‏ ‎—‏ ‎когда ‎истинное‏ ‎благосостояние ‎связано‏ ‎с ‎долгосрочной ‎устойчивостью;

Вы ‎можете ‎подумать,‏ ‎что‏ ‎эти‏ ‎проблемы ‎и‏ ‎вопросы ‎далеки‏ ‎от ‎нас,‏ ‎однако‏ ‎над ‎этими‏ ‎вопросами ‎уже ‎задумываются ‎сегодня ‎многие‏ ‎экономисты. ‎Как‏ ‎отмечает‏ ‎профессор ‎экономики ‎Джеффри‏ ‎Сакс:

«Наши ‎экономические‏ ‎модели ‎не ‎просто ‎устарели‏ ‎—‏ ‎они ‎опасны.‏ ‎Мы ‎оптимизируем‏ ‎параметры, ‎игнорируя ‎экзистенциальные ‎риски ‎для‏ ‎всего‏ ‎человечества».


Другими ‎словами,‏ ‎при ‎нынешней‏ ‎экономической ‎модели ‎человечество ‎будет ‎игнорировать‏ ‎космос‏ ‎со‏ ‎всеми ‎его‏ ‎плюшками ‎до‏ ‎тех ‎пор,‏ ‎пока‏ ‎не ‎истощит‏ ‎все ‎земные ‎ресурсы, ‎что ‎попросту‏ ‎ради ‎выживания‏ ‎человеческого‏ ‎вида ‎вынудит ‎начать‏ ‎его ‎экспансию.

  • И‏ ‎вот ‎большой ‎вопрос: ‎а‏ ‎сможет‏ ‎ли ‎истощенное‏ ‎человечество ‎вообще‏ ‎что-либо ‎сделать ‎в ‎космосе ‎в‏ ‎условиях‏ ‎громадного ‎дефицита‏ ‎ресурсов ‎на‏ ‎Земле?

Вместо ‎того ‎чтобы ‎сегодня, ‎при‏ ‎наличии‏ ‎вообще‏ ‎всех ‎необходимых‏ ‎ресурсов ‎на‏ ‎планете, ‎начать‏ ‎пусть‏ ‎и ‎тяжелую‏ ‎в ‎начале, ‎но ‎бесконечно ‎выгодную‏ ‎в ‎итоге‏ ‎колонизацию‏ ‎той ‎же ‎солнечной‏ ‎системы, ‎сегодня‏ ‎доля ‎мирового ‎ВВП, ‎направляемая‏ ‎на‏ ‎космические ‎исследования,‏ ‎составляет ‎менее‏ ‎0,09%. ‎При ‎этом ‎на ‎военные‏ ‎расходы‏ ‎идёт ‎более‏ ‎2,2% ‎мирового‏ ‎ВВП. ‎Мы ‎готовимся ‎к ‎войнам‏ ‎друг‏ ‎с‏ ‎другом ‎вместо‏ ‎того, ‎чтобы‏ ‎объединиться ‎не‏ ‎только‏ ‎против ‎общих‏ ‎космических ‎угроз, ‎которые, ‎безусловно, ‎есть,‏ ‎но ‎и‏ ‎ради‏ ‎выживаемости ‎всего ‎человечества‏ ‎в ‎том‏ ‎виде, ‎в ‎котором ‎оно‏ ‎существует…

Может‏ ‎ли ‎сегодня‏ ‎человечество ‎спасти‏ ‎планету ‎от ‎падения ‎астероида?

«Если ‎бы‏ ‎инопланетная‏ ‎цивилизация ‎наблюдала‏ ‎за ‎нами,‏ ‎она ‎бы ‎сочла ‎нас ‎видом‏ ‎с‏ ‎суицидальными‏ ‎наклонностями», ‎—‏ ‎замечает ‎астроном‏ ‎Карл ‎Саган‏ ‎в‏ ‎своей ‎книге‏ ‎«Бледно-голубая ‎точка».

Оппоненты ‎космических ‎исследований ‎вопят‏ ‎о ‎«напрасной‏ ‎трате‏ ‎денег», ‎но ‎забывают,‏ ‎как ‎в‏ ‎1492 ‎году ‎многие ‎считали‏ ‎экспедицию‏ ‎Колумба ‎бессмысленной‏ ‎авантюрой. ‎Сегодня‏ ‎их ‎ложь ‎разбивается ‎о ‎факт:‏ ‎технологии,‏ ‎разработанные ‎для‏ ‎космос ‎в‏ ‎60-70 ‎годы, ‎приносят ‎экономике ‎сегодня‏ ‎в‏ ‎7-14‏ ‎раз ‎больше,‏ ‎чем ‎было‏ ‎в ‎них‏ ‎вложено.

Есть‏ ‎более ‎консервативные‏ ‎оценки, ‎но ‎даже ‎самые ‎пессимистичные‏ ‎из ‎них‏ ‎говорят‏ ‎о ‎том, ‎что‏ ‎каждый ‎рубль,‏ ‎доллар, ‎юань, ‎вложенный ‎в‏ ‎космические‏ ‎технологии ‎сегодня,‏ ‎принесут ‎в‏ ‎3–4 ‎раза ‎больше ‎прибыли ‎в‏ ‎экономику‏ ‎в ‎течение‏ ‎следующих ‎десятилетий.

То‏ ‎есть ‎инвестиции ‎в ‎космическую ‎отрасль‏ ‎уже‏ ‎сегодня‏ ‎имеют ‎высокий‏ ‎показатель ‎возврата‏ ‎инвестиций ‎из-за‏ ‎развития‏ ‎новых ‎технологий,‏ ‎создания ‎рабочих ‎мест, ‎появления ‎инноваций‏ ‎в ‎смежных‏ ‎отраслях‏ ‎и ‎общего ‎стимулирования‏ ‎научно-технического ‎прогресса‏ ‎человечества.

Скажем ‎так, ‎различные ‎каналы,‏ ‎транслирующие‏ ‎идею ‎о‏ ‎том, ‎что‏ ‎«нужно ‎решить ‎проблемы ‎на ‎Земле,‏ ‎прежде‏ ‎чем ‎лететь‏ ‎в ‎космос»,‏ ‎дискредитировали ‎себя ‎отсутствием ‎понимания ‎масштаба.‏ ‎Их‏ ‎аналитика‏ ‎подобна ‎рассуждениям‏ ‎средневекового ‎крестьянина‏ ‎о ‎геополитике‏ ‎—‏ ‎ограничена ‎непониманием‏ ‎взаимосвязей.

Примитивный ‎утилитаризм, ‎не ‎видящий ‎дальше‏ ‎ближайшего ‎электорального‏ ‎цикла,‏ ‎— ‎главный ‎враг‏ ‎космического ‎будущего‏ ‎человечества. ‎Когда ‎Джон ‎Кеннеди‏ ‎объявил‏ ‎о ‎лунной‏ ‎программе, ‎экономисты-скептики‏ ‎называли ‎это ‎«пустой ‎тратой ‎денег».‏ ‎Сегодня‏ ‎мы ‎знаем,‏ ‎что ‎каждый‏ ‎доллар, ‎вложенный ‎в ‎программу ‎«Апполон»,‏ ‎вернулся‏ ‎в‏ ‎экономику ‎многократно‏ ‎— ‎через‏ ‎новые ‎технологии,‏ ‎материалы‏ ‎и ‎научные‏ ‎прорывы.


И ‎вот ‎внимание, ‎возврат ‎инвестиций‏ ‎реально ‎многократно‏ ‎превзошли‏ ‎любые ‎вложения ‎в‏ ‎программу ‎«Апполон»,‏ ‎причем ‎даже ‎если ‎всё‏ ‎это‏ ‎было ‎конспирологией‏ ‎и ‎никуда‏ ‎по ‎факту ‎американцы ‎не ‎полетели,‏ ‎те‏ ‎исследования, ‎те‏ ‎технологии, ‎которые‏ ‎были ‎разработаны ‎в ‎рамках ‎программы‏ ‎«Апполон»,‏ ‎окупились‏ ‎на ‎порядки‏ ‎и ‎продолжают‏ ‎приносить ‎прибыль‏ ‎и‏ ‎сегодня:

  • Интегральные ‎схемы‏ ‎и ‎микрочипы ‎— ‎программа ‎«Аполлон»‏ ‎требовала ‎миниатюризации‏ ‎электроники,‏ ‎что ‎стимулировало ‎развитие‏ ‎микрочипов, ‎без‏ ‎которых ‎сегодня ‎невозможно ‎представить‏ ‎современные‏ ‎компьютеры, ‎смартфоны‏ ‎и ‎другие‏ ‎устройства.
  • Системы ‎очистки ‎воды ‎— ‎технологии,‏ ‎разработанные‏ ‎для ‎обеспечения‏ ‎астронавтов ‎чистой‏ ‎водой, ‎сегодня ‎используются ‎в ‎муниципальных‏ ‎системах‏ ‎водоочистки‏ ‎по ‎всему‏ ‎миру.
  • Фотоэлементы ‎и‏ ‎солнечные ‎батареи‏ ‎—‏ ‎солнечные ‎панели,‏ ‎первоначально ‎разработанные ‎для ‎космических ‎аппаратов,‏ ‎сегодня ‎являются‏ ‎ключевой‏ ‎технологией ‎возобновляемой ‎энергетики.
  • Огнестойкие‏ ‎материалы ‎—‏ ‎материалы, ‎созданные ‎для ‎защиты‏ ‎космических‏ ‎кораблей ‎при‏ ‎входе ‎в‏ ‎атмосферу, ‎сегодня ‎используются ‎в ‎строительстве,‏ ‎авиации‏ ‎и ‎производстве‏ ‎защитной ‎одежды.
  • Медицинские‏ ‎технологии ‎— ‎системы ‎мониторинга ‎жизненных‏ ‎показателей‏ ‎астронавтов‏ ‎привели ‎к‏ ‎созданию ‎современного‏ ‎медицинского ‎оборудования‏ ‎для‏ ‎мониторинга ‎пациентов.
  • Термоизоляционные‏ ‎материалы ‎— ‎технологии, ‎разработанные ‎для‏ ‎защиты ‎космических‏ ‎аппаратов‏ ‎от ‎экстремальных ‎температур,‏ ‎сегодня ‎используются‏ ‎в ‎строительстве ‎и ‎производстве‏ ‎бытовой‏ ‎техники.
  • Компьютерные ‎системы‏ ‎управления ‎—‏ ‎программное ‎обеспечение, ‎разработанное ‎для ‎управления‏ ‎космическими‏ ‎аппаратами, ‎легло‏ ‎в ‎основу‏ ‎современных ‎систем ‎управления ‎производством, ‎транспортом‏ ‎и‏ ‎инфраструктурой.
  • Спутниковая‏ ‎навигация ‎—‏ ‎технологии, ‎связанные‏ ‎с ‎определением‏ ‎положения‏ ‎космических ‎аппаратов,‏ ‎привели ‎к ‎созданию ‎GPS ‎и‏ ‎других ‎навигационных‏ ‎систем,‏ ‎без ‎которых ‎сегодня‏ ‎невозможно ‎представить‏ ‎логистику, ‎транспорт ‎и ‎множество‏ ‎других‏ ‎отраслей.

Аналогичные ‎прорывные‏ ‎технологии ‎дала‏ ‎миру ‎космическая ‎программа ‎СССР:

  • Автоматические ‎системы‏ ‎стыковки‏ ‎космических ‎аппаратов‏ ‎— ‎СССР‏ ‎был ‎пионером ‎в ‎разработке ‎этих‏ ‎технологий‏ ‎(система‏ ‎«Игла»), ‎что‏ ‎сегодня ‎используется‏ ‎при ‎доставке‏ ‎грузов‏ ‎на ‎МКС‏ ‎и ‎других ‎космических ‎операциях.
  • Криогенные ‎технологии‏ ‎и ‎сверхпроводимость‏ ‎—‏ ‎исследования ‎СССР ‎для‏ ‎ракетных ‎двигателей‏ ‎привели ‎к ‎прорывам ‎в‏ ‎области‏ ‎криогенных ‎технологий,‏ ‎используемых ‎сегодня‏ ‎в ‎медицине ‎(МРТ-сканеры) ‎и ‎научных‏ ‎исследованиях.
  • Материалы‏ ‎с ‎памятью‏ ‎формы ‎—‏ ‎сплавы, ‎разработанные ‎для ‎космической ‎техники‏ ‎Союза,‏ ‎сегодня‏ ‎широко ‎используются‏ ‎в ‎медицине,‏ ‎автомобилестроении ‎и‏ ‎строительстве.
  • Системы‏ ‎жизнеобеспечения ‎в‏ ‎замкнутых ‎пространствах ‎— ‎технологии ‎регенерации‏ ‎воздуха ‎и‏ ‎воды,‏ ‎разработанные ‎для ‎орбитальных‏ ‎станций ‎«Салют»‏ ‎и ‎«Мир», ‎нашли ‎применение‏ ‎в‏ ‎подводных ‎лодках,‏ ‎бункерах ‎и‏ ‎специализированных ‎медицинских ‎учреждениях.
  • Дистанционное ‎зондирование ‎Земли‏ ‎—‏ ‎советские ‎спутники‏ ‎серии ‎«Ресурс»‏ ‎и ‎«Метеор» ‎заложили ‎основы ‎современных‏ ‎технологий‏ ‎мониторинга‏ ‎сельского ‎хозяйства,‏ ‎лесных ‎пожаров,‏ ‎климатических ‎изменений.
  • Термостойкие‏ ‎и‏ ‎радиационно-защитные ‎материалы‏ ‎— ‎разработки ‎СССР ‎для ‎космических‏ ‎аппаратов ‎сейчас‏ ‎применяются‏ ‎в ‎атомной ‎энергетике,‏ ‎медицине ‎и‏ ‎промышленности ‎по ‎всему ‎миру
  • Телемедицина‏ ‎—‏ ‎системы ‎дистанционного‏ ‎мониторинга ‎здоровья‏ ‎космонавтов ‎положили ‎начало ‎современным ‎технологиям‏ ‎телемедицины.
  • Сверхпрочные‏ ‎сплавы ‎металлов‏ ‎— ‎материалы,‏ ‎разработанные ‎для ‎ракетных ‎двигателей, ‎сейчас‏ ‎используются‏ ‎в‏ ‎авиации, ‎энергетике‏ ‎и ‎других‏ ‎отраслях ‎промышленности.
  • Прецизионные‏ ‎системы‏ ‎управления ‎—‏ ‎технологии ‎точного ‎управления ‎космическими ‎аппаратами‏ ‎(программа ‎Буран)‏ ‎нашли‏ ‎применение ‎в ‎современных‏ ‎промышленных ‎системах‏ ‎автоматики.

Теперь ‎вы ‎понимаете, ‎почему‏ ‎я‏ ‎говорю, ‎что‏ ‎исследования, ‎направленные‏ ‎на ‎космическую ‎экспансию, ‎окупаются ‎на‏ ‎порядок‏ ‎(в ‎10‏ ‎раз) ‎в‏ ‎других ‎сферах ‎человеческой ‎деятельности ‎и‏ ‎мировой‏ ‎экономики.

Да‏ ‎и ‎вся‏ ‎история ‎человечества‏ ‎— ‎это‏ ‎история‏ ‎расширения ‎горизонтов.‏ ‎От ‎первых ‎выходов ‎из ‎африканской‏ ‎прародины ‎до‏ ‎открытия‏ ‎Америки, ‎мы ‎всегда‏ ‎искали ‎новые‏ ‎пространства. ‎Космос ‎— ‎это‏ ‎следующий‏ ‎логический ‎шаг,‏ ‎который ‎позволит‏ ‎преодолеть ‎ограничения ‎земной ‎экономики.

«Мы ‎стоим‏ ‎на‏ ‎пороге ‎величайшей‏ ‎трансформации ‎с‏ ‎момента ‎появления ‎разумной ‎жизни ‎на‏ ‎Земле.‏ ‎Либо‏ ‎мы ‎станем‏ ‎многопланетным ‎видом,‏ ‎либо ‎останемся‏ ‎прикованными‏ ‎к ‎колыбели,‏ ‎которая ‎не ‎вечна», ‎— ‎писал‏ ‎астрофизик ‎Стивен‏ ‎Хокинг‏ ‎в ‎своей ‎последней‏ ‎работе.

В ‎1950-х‏ ‎годах ‎СССР ‎и ‎США‏ ‎вкладывали‏ ‎значительные ‎ресурсы‏ ‎в ‎космос‏ ‎не ‎просто ‎из ‎соображений ‎престижа‏ ‎—‏ ‎они ‎интуитивно‏ ‎понимали ‎стратегическое‏ ‎значение ‎этого ‎направления. ‎Сегодня, ‎когда‏ ‎космос‏ ‎потихоньку‏ ‎начинает ‎отдаваться‏ ‎в ‎условно‏ ‎частные ‎руки,‏ ‎вроде‏ ‎SpaceX ‎и‏ ‎Blue ‎Origin, ‎мы ‎наблюдаем ‎новый‏ ‎виток ‎экономической‏ ‎конкуренции‏ ‎— ‎уже ‎не‏ ‎между ‎нациями,‏ ‎а ‎между ‎традиционными ‎государственными‏ ‎и‏ ‎новыми ‎частными‏ ‎моделями ‎освоения‏ ‎космоса.

До ‎15 ‎века ‎Китай ‎был‏ ‎технологическим‏ ‎лидером ‎мира.‏ ‎Затем ‎император‏ ‎принял ‎решение ‎свернуть ‎морские ‎экспедиции‏ ‎и‏ ‎сосредоточиться‏ ‎на ‎внутренних‏ ‎проблемах. ‎Результат‏ ‎— ‎столетия‏ ‎отставания‏ ‎и ‎унижений‏ ‎от ‎технологически ‎превосходящего ‎Запада.

  • Китайцы ‎этого‏ ‎никогда ‎не‏ ‎забудут…

Так‏ ‎и ‎сокращение ‎космических‏ ‎программ ‎в‏ ‎пользу ‎«насущных ‎земных ‎проблем»‏ ‎неизбежно‏ ‎приведет ‎к‏ ‎техническому ‎застою‏ ‎и ‎упущенным ‎возможностям.

При ‎этом ‎Китай,‏ ‎похоже,‏ ‎усвоил ‎исторический‏ ‎урок. ‎Китайская‏ ‎космическая ‎программа ‎активно ‎развивается, ‎с‏ ‎амбициозными‏ ‎планами‏ ‎по ‎Луне‏ ‎и ‎Марсу.‏ ‎Это ‎стратегическое‏ ‎видение,‏ ‎недоступное ‎политикам,‏ ‎мыслящим ‎в ‎рамках ‎одного ‎электорального‏ ‎цикла.

Посмотрим ‎на‏ ‎цифры:‏ ‎за ‎последнее ‎десятилетие‏ ‎Китай ‎увеличил‏ ‎финансирование ‎космических ‎программ ‎на‏ ‎350%,‏ ‎в ‎то‏ ‎время ‎как‏ ‎в ‎странах ‎Запада ‎наблюдается ‎стагнация‏ ‎или‏ ‎сокращение ‎бюджетов.

Страны,‏ ‎первыми ‎адаптировавшие‏ ‎свои ‎экономические ‎стратегии ‎к ‎космической‏ ‎реальности,‏ ‎получат‏ ‎колоссальное ‎преимущество.‏ ‎Они ‎будут‏ ‎писать ‎условия‏ ‎новой‏ ‎эпохи, ‎как‏ ‎когда-то ‎морские ‎державы ‎определяли ‎мировой‏ ‎порядок ‎в‏ ‎эпоху‏ ‎Великих ‎географических ‎открытий.

Россия,‏ ‎США, ‎Китай‏ ‎— ‎все ‎земные ‎державы‏ ‎подобны‏ ‎детям, ‎спорящим‏ ‎о ‎песочнице,‏ ‎когда ‎перед ‎ними ‎открывается ‎весь‏ ‎пляж.‏ ‎Настоящий ‎выигрыш‏ ‎получит ‎не‏ ‎тот, ‎кто ‎контролирует ‎больше ‎земных‏ ‎ресурсов,‏ ‎а‏ ‎тот, ‎кто‏ ‎первым ‎освоит‏ ‎ресурсы ‎космоса.


Переход‏ ‎к‏ ‎освоению ‎космических‏ ‎ресурсов ‎фундаментально ‎изменит ‎экономику ‎с‏ ‎игры ‎с‏ ‎нулевой‏ ‎суммой ‎(борьба ‎за‏ ‎ограниченные ‎земные‏ ‎ресурсы) ‎на ‎игру ‎с‏ ‎положительной‏ ‎суммой ‎(освоение‏ ‎практически ‎бесконечных‏ ‎ресурсов ‎в ‎рамках ‎человеческой ‎деятельности‏ ‎сегодня).

  • Ключевой‏ ‎технологией ‎тут‏ ‎будет ‎являться‏ ‎развитие ‎добычи ‎и ‎переработки ‎на‏ ‎месте.

В‏ ‎следующей‏ ‎части ‎мы‏ ‎рассмотрим, ‎как‏ ‎космическая ‎перспектива‏ ‎меняет‏ ‎понимание ‎социальной‏ ‎справедливости, ‎образования ‎и ‎трудовых ‎отношений.‏ ‎Мы ‎увидим,‏ ‎что‏ ‎экономика ‎21 ‎века‏ ‎требует ‎фундаментального‏ ‎переосмысления ‎в ‎свете ‎наших‏ ‎космических‏ ‎возможностей.

От ‎колыбели‏ ‎— ‎к‏ ‎звёздам. ‎ЧАСТЬ ‎2: ‎космические ‎перспективы‏ ‎будущего…


Смотреть: 1+ мин
logo Hoffmann+

Риторика европейских «поджигателей войны» и военная промышленность ЕС

В ‎марте‏ ‎официальные ‎лица ‎Европейского ‎союза, ‎Франции,‏ ‎Соединенного ‎королевства‏ ‎и‏ ‎других ‎стран ‎Европы‏ ‎в ‎своих‏ ‎заявлениях ‎очень ‎часто ‎говорили‏ ‎о‏ ‎«грядущей ‎войне‏ ‎с ‎Россией». Этот‏ ‎нарратив ‎позволил ‎им ‎отыграть ‎несколько‏ ‎очков‏ ‎во ‎внутриполитическом‏ ‎спектакле, ‎в‏ ‎то ‎время ‎как ‎попытки ‎Брюсселя‏ ‎консолидировать‏ ‎вокруг‏ ‎подготовки ‎к‏ ‎войне ‎все‏ ‎страны-члены ‎ЕС‏ ‎не‏ ‎увенчались ‎особым‏ ‎успехом, ‎если ‎не ‎считать ‎позиции‏ ‎Польши ‎или‏ ‎бывших‏ ‎советских ‎республик ‎Прибалтики.‏ ‎

Но ‎воинственная‏ ‎риторика ‎и ‎запугивание ‎«российской‏ ‎угрозой» в‏ ‎первую ‎очередь‏ ‎играют ‎на‏ ‎руку ‎военной ‎промышленности ‎Евросоюза, ‎прежде‏ ‎всего‏ ‎французской. ‎Она‏ ‎преобразует ‎«угрозы»‏ ‎в ‎обоснование ‎программ ‎закупок ‎вооружения.

Финансы‏ ‎и‏ ‎производство

В‏ ‎2024 ‎финансовые‏ ‎показатели ‎ключевых‏ ‎игроков ‎европейской‏ ‎военной‏ ‎промышленности ‎показали‏ ‎рост ‎прибыли. ‎Так, ‎французская ‎самолетостроительная‏ ‎компания ‎Dassault‏ ‎Aviation увеличила‏ ‎свою ‎чистую ‎прибыль‏ ‎на ‎19,2%‏ ‎(€1,1 ‎млрд), ‎а ‎маржа‏ ‎составила‏ ‎17%. ‎Оборот‏ ‎французского ‎производителя‏ ‎военной ‎электроники ‎Thales увеличился ‎на ‎8,3%‏ ‎(€20,6‏ ‎млрд) ‎при‏ ‎чистой ‎прибыли‏ ‎€507 ‎млн.

В ‎настоящее ‎время ‎Dassault‏ ‎выпускает‏ ‎три‏ ‎истребителя ‎Rafale в‏ ‎месяц. ‎Фирма‏ ‎планирует ‎увеличить‏ ‎этот‏ ‎показатель ‎до‏ ‎четырех-пяти ‎единиц ‎в ‎месяц ‎к‏ ‎2030. ‎

Что‏ ‎характерно,‏ ‎ключевые ‎контракты ‎в‏ ‎очереди ‎заказов‏ ‎французской ‎компании ‎– ‎от‏ ‎азиатских‏ ‎стран. ‎Это‏ ‎26 ‎Rafale‏ ‎для ‎ВМС ‎Индии ‎и ‎80‏ ‎этих‏ ‎истребителей ‎в‏ ‎версии ‎F4‏ ‎(возможен ‎переход ‎на ‎F5) ‎в‏ ‎интересах‏ ‎ОАЭ.‏ ‎Dassault ‎также‏ ‎ведет ‎переговоры‏ ‎с ‎Саудовской‏ ‎Аравией.‏ ‎

Вместе ‎с‏ ‎тем ‎фирма ‎испытывает ‎проблемы ‎с‏ ‎долгим ‎циклом‏ ‎подготовки‏ ‎кадров ‎и ‎расширения‏ ‎цепочки ‎поставок.‏ ‎В ‎лучшем ‎случае ‎их‏ ‎устранение‏ ‎может ‎занять‏ ‎два-три ‎года.

Thales‏ ‎же ‎имеет ‎рекордный ‎портфель ‎заказов‏ ‎на‏ ‎сумму ‎€39‏ ‎млрд. ‎В‏ ‎2025 ‎в ‎приоритетах ‎корпорации ‎увеличение‏ ‎в‏ ‎три‏ ‎раза ‎производства‏ ‎радиолокационных ‎станций‏ ‎с ‎активной‏ ‎фазированной‏ ‎антенной ‎решеткой‏ ‎RBE2 ‎Mk ‎4.1 для ‎оснащения ‎Rafale,‏ ‎а ‎также‏ ‎увеличение‏ ‎в ‎четыре ‎раза‏ ‎выпуска ‎ракетного‏ ‎оружия.

Что ‎касается ‎рыночной ‎динамики,‏ ‎то‏ ‎на ‎фоне‏ ‎планов ‎ЕС‏ ‎увеличить ‎военные ‎расходы ‎до ‎€800‏ ‎млрд‏ ‎наблюдается ‎рост‏ ‎акций ‎европейских‏ ‎военно-промышленных ‎корпораций: ‎британской ‎BAE ‎Systems, итальянской‏ ‎Leonardo и‏ ‎немецкой‏ ‎Rheinmetall.

Также, ‎приостановка‏ ‎американской ‎военной‏ ‎помощи ‎Украине‏ ‎усилила‏ ‎спрос ‎на‏ ‎европейское ‎вооружение.

Политический ‎контекст ‎и ‎стратегические‏ ‎инициативы

Как ‎уже‏ ‎упоминалось,‏ ‎Европейская ‎комиссия ‎планирует‏ ‎увеличить ‎военные‏ ‎затраты ‎до ‎€800 ‎млрд.‏ ‎Из‏ ‎них ‎€150‏ ‎млрд ‎пойдут‏ ‎на ‎кредитование ‎перевооружения. ‎При ‎этом‏ ‎в‏ ‎своей ‎риторике‏ ‎Брюссель ‎фактически‏ ‎поддерживает ‎идеи ‎президента ‎Франции ‎Эмманюэля‏ ‎Макрона о‏ ‎«независимости‏ ‎от ‎США», включая‏ ‎разговоры ‎о‏ ‎ядерном ‎арсенале‏ ‎ЕС.‏ ‎Эти ‎две‏ ‎очень ‎неустойчивые ‎тенденции ‎лежат ‎в‏ ‎основе ‎так‏ ‎называемой‏ ‎«европейской ‎стратегической ‎автономии».

В‏ ‎ФРГ ‎председатель‏ ‎проатлантистской ‎партии ‎Христианско-демократический ‎союз (ХДС)‏ ‎и,‏ ‎вероятно, ‎будущий‏ ‎канцлер ‎страны‏ ‎Фридрих ‎Мерц предлагает ‎создать ‎«европейский ‎ядерный‏ ‎зонтик» и‏ ‎отменить ‎«долговой‏ ‎тормоз» ‎для‏ ‎финансирования ‎военных ‎расходов. ‎Еще ‎более‏ ‎радикально‏ ‎атлантистская‏ ‎леволиберальная ‎партия‏ ‎Союз ‎90/Зеленые‏ ‎поддерживает ‎увеличение‏ ‎военных‏ ‎затрат. ‎Таким‏ ‎образом, ‎Мерц, ‎ХДС ‎и ‎немецкие‏ ‎«зеленые» ‎вторят‏ ‎позициям‏ ‎Брюсселя.

В ‎этот ‎якобы‏ ‎«оборонительный» ‎контекст‏ ‎вписывается ‎инициатива, ‎которая ‎выходит‏ ‎за‏ ‎рамки ‎Евросоюза‏ ‎и ‎имеет‏ ‎очевидный ‎наступательный ‎характер ‎– ‎формирование‏ ‎«коалиции‏ ‎желающих» для ‎отправки‏ ‎войск ‎на‏ ‎Украину ‎под ‎видом ‎«миротворческого ‎контингента». Эта‏ ‎идея‏ ‎принадлежит‏ ‎Франции ‎и‏ ‎Соединенному ‎королевству,‏ ‎которое ‎уже‏ ‎не‏ ‎входит ‎в‏ ‎ЕС.

Если ‎«ядерный ‎зонтик» ‎США ‎в‏ ‎настоящее ‎время‏ ‎фактически‏ ‎не ‎имеет ‎альтернатив‏ ‎для ‎Европы,‏ ‎а ‎угроза ‎официального ‎англо-французского‏ ‎военного‏ ‎вмешательства ‎в‏ ‎специальную ‎военную‏ ‎операцию ‎больше ‎похожа ‎на ‎попытку‏ ‎попасть‏ ‎за ‎стол‏ ‎переговоров ‎между‏ ‎РФ ‎и ‎США, ‎то ‎увеличение‏ ‎военных‏ ‎расходов‏ ‎– ‎вполне‏ ‎реальная ‎стратегическая‏ ‎инициатива, ‎основанная‏ ‎на‏ ‎коммерческом ‎интересе‏ ‎европейской ‎военной ‎промышленности.

Сбыт ‎военной ‎продукции‏ ‎и ‎геополитика

Если‏ ‎взять‏ ‎в ‎расчет ‎ключевые‏ ‎рынки ‎Thales‏ ‎с ‎ее ‎рекордным ‎портфелем‏ ‎заказов,‏ ‎то ‎рост‏ ‎продаж ‎корпорации‏ ‎наблюдается ‎только ‎во ‎Франции ‎(что‏ ‎неизбежно)‏ ‎и ‎Соединенном‏ ‎королевстве. ‎Основной‏ ‎же ‎рост ‎заказов ‎фирмы ‎–‏ ‎на‏ ‎9,6%‏ ‎- ‎наблюдается‏ ‎на ‎азиатском‏ ‎рынке. ‎Это‏ ‎такие‏ ‎покупатели, ‎как‏ ‎Индия, ‎Индонезия, ‎Саудовская ‎Аравия ‎и‏ ‎ОАЭ.

Такие ‎тенденции‏ ‎будут‏ ‎и ‎у ‎других‏ ‎крупных ‎европейских‏ ‎производителей ‎продукции ‎военного ‎назначения‏ ‎(ПВН).‏ ‎Их ‎зоны‏ ‎роста ‎–‏ ‎Индо-Тихоокеанский ‎регион ‎и ‎Ближний ‎Восток.

Усиление‏ ‎спроса‏ ‎на ‎европейское‏ ‎вооружение ‎на‏ ‎фоне ‎сокращения ‎американской ‎военной ‎помощи‏ ‎Украине‏ ‎также‏ ‎имеет ‎свои‏ ‎пределы. ‎В‏ ‎2024 ‎у‏ ‎той‏ ‎же ‎Thales‏ ‎на ‎украинский ‎рынок ‎приходилось ‎менее‏ ‎1% ‎от‏ ‎всех‏ ‎заказов. ‎

Однако ‎в‏ ‎III.2025 ‎Thales‏ ‎Air ‎Defence – североирландское ‎подразделение ‎французской‏ ‎корпорации‏ ‎– ‎получило‏ ‎контракт ‎на‏ ‎поставку ‎Киеву ‎5 ‎тыс. ‎многоцелевых‏ ‎ракет‏ ‎Martlet. Сделка ‎стоимостью‏ ‎£1,6 ‎млрд‏ ‎стала ‎коммерческим ‎успехом ‎ольстерского ‎филиала‏ ‎Thales.

У‏ ‎производителей‏ ‎боевых ‎машин‏ ‎и ‎боеприпасов‏ ‎показатель ‎поставок‏ ‎ПВН‏ ‎на ‎Украине‏ ‎может ‎быть ‎на ‎порядок ‎выше,‏ ‎но ‎не‏ ‎является‏ ‎ключевым ‎в ‎портфеле‏ ‎заказов.

Технологические ‎тренды

Хотя‏ ‎выход ‎США ‎из ‎НАТО‏ ‎представляется‏ ‎маловероятным, ‎в‏ ‎ЕС ‎прорабатывают‏ ‎военно-технические ‎угрозы, ‎связанные ‎с ‎возможной‏ ‎сменой‏ ‎военно-политических ‎ориентиров‏ ‎Вашингтона. ‎Так,‏ ‎применение ‎американских ‎истребителей ‎F-35 ‎может‏ ‎стать‏ ‎для‏ ‎европейских ‎стран‏ ‎очень ‎рискованным.‏ ‎

В ‎этом‏ ‎контексте‏ ‎одним ‎из‏ ‎ключевых ‎вопросов ‎является ‎альтернатива ‎авиационному‏ ‎носителю ‎ядерного‏ ‎оружия‏ ‎(ЯО), ‎тем ‎более,‏ ‎если ‎в‏ ‎гипотетическом ‎сценарии ‎Евросоюз ‎станет‏ ‎обладателем‏ ‎такого ‎вооружения.‏ ‎Здесь ‎выбор‏ ‎падает ‎на ‎французские ‎истребители ‎Rafale‏ ‎в‏ ‎модификации ‎носителя‏ ‎ЯО.

В ‎III.2025‏ ‎Франция ‎запустила ‎третий ‎и ‎последний‏ ‎военно-разведывательный‏ ‎спутник‏ ‎серии ‎CSO‏ ‎(Composante ‎Spatiale‏ ‎Optique). Эти ‎космические‏ ‎аппараты‏ ‎входят ‎в‏ ‎европейскую ‎программу ‎спутниковой ‎разведки ‎MUSIS‏ ‎(MUltinational ‎Space-based‏ ‎Imaging‏ ‎System ‎for ‎Surveillance,‏ ‎Reconnaissance ‎and‏ ‎Observation) под ‎эгидой ‎военного ‎агентства‏ ‎ЕС‏ ‎EDA ‎(European‏ ‎Defence ‎Agency).

Эта‏ ‎программа, ‎как ‎ожидается, ‎обеспечит ‎частичную‏ ‎независимость‏ ‎европейских ‎стран‏ ‎от ‎США‏ ‎в ‎области ‎видовой ‎разведки ‎из‏ ‎космоса.‏ ‎MUSIS‏ ‎– ‎переходная‏ ‎программа ‎на‏ ‎пути ‎к‏ ‎более‏ ‎широкому ‎проекту.‏ ‎Его ‎реализация ‎- ‎в ‎коммерческих‏ ‎интересах ‎французских‏ ‎корпораций‏ ‎Thales ‎и ‎Airbus.

Кроме‏ ‎того, ‎Thales‏ ‎инвестирует ‎в ‎разработку ‎и‏ ‎производство‏ ‎систем ‎киберзащиты‏ ‎для ‎Rafale‏ ‎и ‎наземных ‎радиолокационных ‎станций ‎истребителя.‏ ‎Фирма‏ ‎стремится ‎позиционировать‏ ‎самолет ‎как‏ ‎авиационный ‎комплекс, ‎обладающий ‎«кибериммунитетом».

Видео: ‎запуск‏ ‎ракеты-носителя‏ ‎со‏ ‎спутником ‎CSO-3‏ ‎

Заключение

Военные ‎расходы‏ ‎ЕС ‎растут‏ ‎и‏ ‎будут ‎расти,‏ ‎но ‎основная ‎часть ‎ПВН ‎европейских‏ ‎производителей ‎экспортируется‏ ‎в‏ ‎Азию. ‎К ‎тому‏ ‎же, ‎военная‏ ‎промышленность ‎стран ‎Европы ‎подвержена‏ ‎серьезным‏ ‎рискам ‎-задержкам‏ ‎в ‎производстве‏ ‎из-за ‎нехватки ‎кадров ‎и ‎мощностей,‏ ‎а‏ ‎также ‎возможным‏ ‎последствиям ‎«торговой‏ ‎войны» ‎с ‎США.

Ранними ‎признаками ‎реальной‏ ‎подготовки‏ ‎Евросоюза‏ ‎к ‎«стратегической‏ ‎автономии» ‎и‏ ‎полномасштабной ‎войне‏ ‎с‏ ‎Россией ‎станут:‏ ‎скоординированность ‎инвестиций ‎стран-участниц ‎в ‎военные‏ ‎разработки ‎и‏ ‎производство,‏ ‎ускорение ‎темпов ‎модернизации‏ ‎производственных ‎процессов‏ ‎военно-промышленных ‎предприятий ‎и ‎заявленная‏ ‎на‏ ‎доктринальном ‎уровне‏ ‎политическая ‎воля‏ ‎к ‎«стратегической ‎автономии». ‎

Это ‎объявление‏ ‎может‏ ‎прозвучать ‎на‏ ‎саммите ‎НАТО‏ ‎в ‎Гааге ‎в ‎VI.2025. ‎В‏ ‎такой‏ ‎автономии‏ ‎Франция ‎и‏ ‎ее ‎авиационно-космические‏ ‎военные ‎разработки‏ ‎будут‏ ‎играть ‎определяющую‏ ‎роль.

Читать: 4+ мин
logo Норин

Чарльз Биттингер, художник и маэстро камуфляжа

Чарльз ‎Биттингер‏ ‎родился ‎в ‎Вашингтоне ‎в ‎1879.‏ ‎Поначалу ‎он‏ ‎собирался‏ ‎стать ‎ученым, ‎и‏ ‎поступил ‎в‏ ‎Массачусетский ‎технологический, ‎но ‎пару‏ ‎лет‏ ‎спустя ‎бросил‏ ‎учебу ‎и‏ ‎поехал ‎в ‎Сорбонну ‎учиться ‎живописи.‏ ‎Там‏ ‎он ‎женился‏ ‎(жена ‎—‏ ‎малоизвестная ‎певица ‎Эдит ‎Гей), ‎и‏ ‎через‏ ‎несколько‏ ‎лет ‎вернулся‏ ‎в ‎США,‏ ‎где ‎жил‏ ‎в‏ ‎Нью-Йорке ‎и‏ ‎активно ‎писал ‎картины. ‎В ‎Первую‏ ‎мировую ‎сочетание‏ ‎научной‏ ‎подготовки ‎и ‎навыков‏ ‎живописи ‎дало‏ ‎очевидный ‎эффект: ‎Биттингер ‎работал‏ ‎над‏ ‎камуфляжем ‎для‏ ‎кораблей. ‎Причем‏ ‎он ‎забирался ‎действительно ‎глубоко: ‎с‏ ‎помощьи‏ ‎спектрофотометра ‎устанавливал‏ ‎отражающую ‎способность‏ ‎пигментов ‎и ‎красок, ‎имевших ‎спектральные‏ ‎различия,‏ ‎плохо‏ ‎различимые ‎невооруженным‏ ‎глазом, ‎экспериментировал‏ ‎с ‎фильтрами‏ ‎и‏ ‎т. ‎д.‏ ‎Кстати, ‎эти ‎же ‎приемчики ‎можно‏ ‎было ‎использовать‏ ‎для‏ ‎театральных ‎эффектов ‎—‏ ‎скажем, ‎для‏ ‎затемнения ‎или ‎наоборот ‎подчеркивания‏ ‎участков‏ ‎сцены. ‎В‏ ‎общем, ‎у‏ ‎него ‎4 ‎патента ‎с ‎1920‏ ‎по‏ ‎1933 ‎год,‏ ‎а ‎кроме‏ ‎того ‎— ‎весьма ‎самобытная ‎живопись.

В‏ ‎июле‏ ‎1939‏ ‎года ‎он‏ ‎опубликовал ‎в‏ ‎National ‎Geographic‏ ‎серию‏ ‎картин, ‎которые‏ ‎отражали ‎тогдашние ‎представления ‎о ‎том,‏ ‎как ‎может‏ ‎выглядеть‏ ‎космос ‎из ‎космоса.






Он‏ ‎же ‎иллюстрировал‏ ‎ядерные ‎испытания ‎на ‎атолле‏ ‎Бикини:


Читать: 33+ мин
logo Кочетов Алексей

Запретная правда о Российской Орбитальной Станции (РОС)

Доступно подписчикам уровня
«⚡Собеседник»
Подписаться за 300₽ в месяц

Смотреть: 1 час 38+ мин
logo НИЦ ЛАИ - Запретные темы истории

Дмитрий Павлов: Тайна бесконечности Вселенной и Путешествие к другим Мирам


Фильмы ‎Андрея‏ ‎Склярова ‎вне ‎проекта ‎«Запретные ‎темы‏ ‎истории»:

sponsr.ru/onlinelai/26297/Filmy_Andreya_Sklyarova_iDmitriya_Pavlova_vne_cikla_Zapretnye_temy_istorii

Дмитрий ‎Павлов‏ ‎о‏ ‎выходе ‎своей ‎книги,‏ ‎работа ‎над‏ ‎которой ‎заняла ‎44 ‎года:‏ ‎sponsr.ru/onlinelai/81182/Dmitrii_Pavlov_YArabotal_nad_etoi_knigoi_44_goda_Raskryvaya_tainy_prostranstva_ivremeni

Приобрести‏ ‎книгу ‎Дмитрия‏ ‎Павлова ‎можно‏ ‎через ‎Вацап ‎у ‎Александра ‎Лапшина‏ ‎—

тел.:‏ ‎+7 ‎925‏ ‎616-77-10

Бесплатную ‎электронную‏ ‎версию ‎спрашивайте ‎у ‎Д. ‎Павлова:‏ ‎vk.com/id54282450?‏ ‎from=search

Читать: 22+ мин
logo Кочетов Алексей

Всё о секретном проекте SpinLaunch — переворот в космической индустрии…

Представьте ‎себе:‏ ‎гигантский ‎ротор ‎раскручивает ‎снаряд, ‎словно‏ ‎праща ‎Давида,‏ ‎и‏ ‎с ‎ревом ‎бросает‏ ‎его ‎в‏ ‎стратосферу, ‎оставляя ‎ракеты ‎прошлого‏ ‎в‏ ‎тени ‎истории.‏ ‎Это ‎не‏ ‎фантазия ‎из ‎романа ‎Жюля ‎Верна,‏ ‎а‏ ‎реальность, ‎которую‏ ‎калифорнийская ‎компания‏ ‎SpinLaunch ‎воплощает ‎в ‎пустыне ‎Нью-Мексико.

Проще‏ ‎говоря,‏ ‎они‏ ‎намерены ‎запускать‏ ‎ракеты ‎в‏ ‎космос ‎с‏ ‎помощью‏ ‎огромной ‎центрифуги.


Всё‏ ‎началось ‎с ‎тишины. ‎Пока ‎SpaceX‏ ‎Илона ‎Маска‏ ‎гремела‏ ‎взлётами ‎Falcon ‎9,‏ ‎а ‎Blue‏ ‎Origin ‎Джеффа ‎Безоса ‎полировала‏ ‎капсулы‏ ‎для ‎космических‏ ‎туристов, ‎SpinLaunch‏ ‎работала ‎в ‎тени. ‎Никаких ‎пресс-конференций,‏ ‎никаких‏ ‎громких ‎обещаний‏ ‎— ‎только‏ ‎отрывочные ‎слухи ‎о ‎странной ‎машине‏ ‎на‏ ‎космодроме‏ ‎«Америка».

В ‎2014‏ ‎году ‎основатель‏ ‎и ‎генеральный‏ ‎директор‏ ‎SpinLaunch ‎Джонатан‏ ‎Яни, ‎будучи ‎вдохновленным ‎американским ‎проектом‏ ‎высотных ‎исследований‏ ‎HARP,‏ ‎в ‎котором ‎в‏ ‎1960-х ‎годах‏ ‎использовалась ‎космическая ‎пушка ‎для‏ ‎суборбитального‏ ‎запуска ‎снарядов,‏ ‎решил ‎основать‏ ‎свою ‎компанию, ‎которая ‎будет ‎запускать‏ ‎ракеты‏ ‎в ‎космос‏ ‎по ‎принципу‏ ‎пращи.

О ‎проекте ‎HARP ‎и ‎ему‏ ‎подобных‏ ‎космопушек‏ ‎я ‎писал‏ ‎в ‎материале:

Проект‏ ‎космопушки ‎Саддама‏ ‎Хусейна‏ ‎«Из ‎пушки‏ ‎в ‎космос»


На ‎первый ‎взгляд ‎кажется,‏ ‎что ‎это‏ ‎абсурд.‏ ‎В ‎XIX ‎веке‏ ‎Жюль ‎Верн‏ ‎в ‎своём ‎романе ‎«С‏ ‎Земли‏ ‎на ‎Луну»‏ ‎представил ‎пушку-катапульту,‏ ‎ну ‎давайте ‎и ‎в ‎это‏ ‎верить,‏ ‎что ‎с‏ ‎нас ‎убудет?

  • Да,‏ ‎но ‎как ‎может ‎абсурдная ‎идея‏ ‎привлечь‏ ‎капиталы‏ ‎на ‎десятки‏ ‎миллионов ‎долларов?

Оказывается,‏ ‎ещё ‎как‏ ‎может!‏ ‎Начнём ‎с‏ ‎Джонатана ‎Яни, ‎её ‎основателя. ‎Он‏ ‎не ‎романтик‏ ‎с‏ ‎телескопом ‎и ‎не‏ ‎миллиардер ‎с‏ ‎эксцентричными ‎твитами. ‎Яни ‎—‏ ‎инженер‏ ‎с ‎холодным‏ ‎взглядом ‎и‏ ‎горячим ‎упрямством. ‎Американский ‎журнал ‎Wired‏ ‎описывает‏ ‎его ‎как‏ ‎человека, ‎одержимого‏ ‎идеей: ‎если ‎пушки ‎прошлого ‎могли‏ ‎метать‏ ‎ядра‏ ‎на ‎километры,‏ ‎почему ‎бы‏ ‎не ‎запустить‏ ‎спутник‏ ‎с ‎помощью‏ ‎центробежной ‎силы?


В ‎2014 ‎году ‎он‏ ‎вложил ‎свои‏ ‎деньги‏ ‎— ‎миллионы, ‎заработанные‏ ‎на ‎солнечной‏ ‎энергетике, ‎— ‎в ‎этот‏ ‎самый‏ ‎центробежный ‎проект.‏ ‎Его ‎команда‏ ‎начинала ‎с ‎малого: ‎прототипы, ‎расчёты,‏ ‎ошибки.‏ ‎Но ‎к‏ ‎2021 ‎году‏ ‎первый ‎снаряд ‎взлетел, ‎а ‎к‏ ‎сентябрю‏ ‎2022-го‏ ‎они ‎провели‏ ‎10 ‎испытаний.

«Каждый‏ ‎запуск ‎—‏ ‎это‏ ‎не ‎просто‏ ‎тест, ‎а ‎маленький ‎триумф ‎над‏ ‎скептиками», ‎—‏ ‎так‏ ‎писали ‎многочисленные ‎авторитетные‏ ‎журналы.

Яни ‎не‏ ‎говорит ‎громких ‎слов, ‎он‏ ‎строит.‏ ‎И ‎в‏ ‎этой ‎молчаливой‏ ‎решимости ‎— ‎сила, ‎которая ‎заставляет‏ ‎задуматься:‏ ‎а ‎что,‏ ‎если ‎он‏ ‎прав?

За ‎три ‎года ‎компания ‎построила‏ ‎аппарат,‏ ‎который‏ ‎швыряет ‎грузы‏ ‎в ‎небо‏ ‎со ‎скоростью,‏ ‎от‏ ‎которой ‎у‏ ‎физиков ‎дрожат ‎колени.

Центрифуга, ‎назывной ‎«Suborbital‏ ‎Accelerator» ‎(Суборбитальный‏ ‎ускоритель)‏ ‎— ‎это ‎механическое‏ ‎воплощение ‎парадокса.‏ ‎Диаметр ‎33 ‎метра, ‎ротор‏ ‎из‏ ‎углеродного ‎волокна,‏ ‎вращающийся ‎в‏ ‎вакуумной ‎камере, ‎разгоняет ‎снаряд ‎до‏ ‎нескольких‏ ‎километров ‎в‏ ‎секунду!

На ‎доли‏ ‎секунды ‎груз ‎испытывает ‎перегрузки ‎в‏ ‎30‏ ‎000‏ ‎g, ‎а‏ ‎затем ‎вырывается‏ ‎в ‎небо,‏ ‎оставляя‏ ‎за ‎собой‏ ‎лишь ‎эхо. ‎Заявляется, ‎что ‎установка‏ ‎потребляет ‎электроэнергию‏ ‎около‏ ‎476 ‎кВт·ч ‎на‏ ‎максимальной ‎мощности,‏ ‎в ‎то ‎время ‎как‏ ‎ракета‏ ‎Falcon ‎9‏ ‎сжигает ‎сотни‏ ‎тонн ‎керосина ‎и ‎кислорода. ‎Это‏ ‎не‏ ‎просто ‎экономия,‏ ‎это ‎революция.

  • Но‏ ‎есть ‎другой ‎вопрос: ‎выдержат ‎ли‏ ‎спутники‏ ‎такие‏ ‎нагрузки? ‎NASA,‏ ‎Airbus ‎и‏ ‎университеты ‎уже‏ ‎тестировали‏ ‎свои ‎приборы‏ ‎SpinLaunch, ‎и ‎они ‎вернулись ‎целыми.
Подобными‏ ‎восторженными ‎отзывами‏ ‎описывается‏ ‎этот ‎проект ‎в‏ ‎СМИ.

Следующий ‎шаг‏ ‎— ‎строительство ‎более ‎мощной‏ ‎орбитальной‏ ‎системы ‎(L100),‏ ‎системы, ‎которая‏ ‎будет ‎выводить ‎200 ‎кг ‎на‏ ‎орбиту,‏ ‎затрачивая ‎всего‏ ‎за ‎100‏ ‎МВт·ч ‎электроэнергии ‎на ‎разгон, ‎что‏ ‎на‏ ‎порядок‏ ‎меньше, ‎чем‏ ‎затрачивает ‎современный‏ ‎ракетоноситель, ‎выводя‏ ‎полезную‏ ‎нагрузку ‎на‏ ‎околоземную ‎орбиту.


Ротор ‎— ‎сердце ‎системы‏ ‎— ‎сделан‏ ‎из‏ ‎углеродного ‎волокна, ‎материала,‏ ‎который ‎выдерживает‏ ‎напряжения ‎там, ‎где ‎сталь‏ ‎давно‏ ‎бы ‎треснула.‏ ‎На ‎скорости‏ ‎2080 ‎м/с ‎он ‎вращается ‎с‏ ‎частотой‏ ‎1300 ‎об/мин,‏ ‎создавая ‎нагрузки,‏ ‎сравнимые ‎с ‎газовыми ‎центрифугами ‎для‏ ‎обогащения‏ ‎урана.‏ ‎Но ‎если‏ ‎центрифуги ‎—‏ ‎это ‎ювелирные‏ ‎игрушки‏ ‎радиусом ‎в‏ ‎полметра, ‎то ‎Suborbital ‎Accelerator ‎—‏ ‎гигант ‎с‏ ‎размахом‏ ‎в ‎десятки ‎метров.

Но‏ ‎2 ‎км/с‏ ‎— ‎этой ‎скорости ‎недостаточно‏ ‎для‏ ‎выхода ‎на‏ ‎орбиту, ‎нужна‏ ‎минимум ‎7,8 ‎км/с. ‎Но ‎это‏ ‎не‏ ‎беда, ‎ракета‏ ‎будет ‎забрасываться‏ ‎на ‎высоту ‎в ‎65 ‎км‏ ‎и‏ ‎далее‏ ‎разгоняться ‎с‏ ‎помощью ‎ракетных‏ ‎двигателей, ‎которым‏ ‎потребуется‏ ‎в ‎5-10‏ ‎раз ‎меньше ‎топлива ‎из ‎расчета‏ ‎вывода ‎1‏ ‎кг‏ ‎полезной ‎нагрузки, ‎чем‏ ‎ракетам, ‎стартующим‏ ‎с ‎земли.

Компания ‎заявляет, ‎что‏ ‎уже‏ ‎протестировала ‎ракету,‏ ‎необходимую ‎для‏ ‎вывода ‎полезной ‎нагрузки ‎на ‎орбиту.


В‏ ‎2022‏ ‎году ‎SpinLaunch‏ ‎привлекла ‎уже‏ ‎150 ‎млн ‎долларов ‎инвестиций ‎от‏ ‎Kleiner‏ ‎Perkins,‏ ‎Google ‎Ventures,‏ ‎Airbus ‎Ventures,‏ ‎Catapult ‎Ventures,‏ ‎Lauder‏ ‎Partners ‎и‏ ‎McKinley ‎Capital.

150 миллионов ‎долларов ‎— ‎это‏ ‎вера ‎сотен‏ ‎людей‏ ‎в ‎то, ‎что‏ ‎центрифуга ‎может‏ ‎перевернуть ‎космос.
  • Но ‎так ‎ли‏ ‎это‏ ‎на ‎самом‏ ‎деле, ‎и‏ ‎как ‎вообще ‎удалось ‎привлечь ‎уже‏ ‎сотни‏ ‎миллионов?

Начинаем ‎самое‏ ‎интересное.

Что ‎может‏ ‎быть ‎рентабельнее, ‎чем ‎многоразовые ‎ракеты?‏ ‎Только‏ ‎система,‏ ‎где ‎самая‏ ‎тяжелая ‎и‏ ‎сложная ‎первая‏ ‎ступень‏ ‎будет ‎оставаться‏ ‎на ‎земле ‎и ‎как-то ‎передавать‏ ‎свою ‎энергию‏ ‎остальной‏ ‎ракете.

Тут ‎центробежная ‎установка‏ ‎заменяет ‎первую‏ ‎ступень ‎ракеты, ‎а ‎оставшийся‏ ‎ракетный‏ ‎снаряд ‎относительно‏ ‎прост ‎и‏ ‎недорог ‎в ‎производстве.


На ‎основании ‎этой‏ ‎идеи‏ ‎компания ‎смогла‏ ‎в ‎короткие‏ ‎сроки ‎привлечь ‎четыре ‎миллиона ‎долларов‏ ‎в‏ ‎виде‏ ‎стартового ‎капитала.

Конечно,‏ ‎они ‎пошли‏ ‎на ‎хитрости,‏ ‎а‏ ‎точнее, ‎на‏ ‎обман, ‎так ‎в ‎2016 ‎году‏ ‎на ‎привлеченные‏ ‎деньги‏ ‎была ‎построена ‎первая‏ ‎испытательная ‎центрифуга‏ ‎диаметром ‎12 ‎метров. ‎На‏ ‎ней‏ ‎якобы ‎достигли‏ ‎скоростей ‎в‏ ‎6500 ‎км/ч, ‎демонстрируя, ‎как ‎объекты‏ ‎вылетали‏ ‎из ‎центрифуги‏ ‎в ‎металлическую‏ ‎стену.


Такой ‎впечатляющий ‎результат ‎позволил ‎привлечь‏ ‎еще‏ ‎80‏ ‎миллионов ‎долларов‏ ‎инвестиций ‎для‏ ‎строительства ‎более‏ ‎мощной‏ ‎33-метровой ‎центрифуги‏ ‎ныне ‎действующего ‎«Суборбитального ‎ускорителя».


Вот ‎только‏ ‎после ‎реальных‏ ‎испытаний‏ ‎33-метровой ‎центрифуги ‎лучшим‏ ‎результатом ‎стал‏ ‎запуск ‎макета ‎ракеты ‎на‏ ‎высоту‏ ‎9144 ‎метра‏ ‎со ‎скоростью‏ ‎1600 ‎км/ч.

А ‎где ‎якобы ‎ранее‏ ‎полученные‏ ‎4500 ‎км/ч?‏ ‎Но ‎такие‏ ‎вопросы ‎обсуждать ‎не ‎принято, ‎инвесторы‏ ‎уже‏ ‎вложились,‏ ‎а ‎потому…‏ ‎Ну ‎вы‏ ‎поняли…

1600 км/ч ‎—‏ ‎это‏ ‎не ‎4500‏ ‎и ‎уж ‎тем ‎более ‎не‏ ‎7500 ‎км/ч.‏ ‎Но,‏ ‎как ‎говорится, ‎процесс‏ ‎был ‎запущен,‏ ‎и ‎инвесторы ‎принесли ‎еще‏ ‎больше‏ ‎денег, ‎вложившись‏ ‎в ‎компанию‏ ‎на ‎сумму ‎более ‎150 ‎миллионов‏ ‎долларов‏ ‎в ‎2022‏ ‎году.

Но ‎почему?‏ ‎А ‎всё ‎просто, ‎в ‎2019‏ ‎году,‏ ‎еще‏ ‎до ‎проведения‏ ‎летных ‎испытаний,‏ ‎компания ‎подписала‏ ‎контракт‏ ‎с ‎отделом‏ ‎оборонных ‎инноваций ‎Пентагона ‎на ‎первые‏ ‎экспериментальные ‎орбитальные‏ ‎запуски.‏ ‎Далее ‎последовал ‎контракт‏ ‎с ‎NASA‏ ‎на ‎испытание ‎и ‎вывод‏ ‎полезной‏ ‎нагрузки.


Как ‎после‏ ‎этого ‎не‏ ‎верить ‎в ‎компанию? ‎На ‎слуху‏ ‎SpaceX,‏ ‎которая ‎ещё‏ ‎не ‎разработала‏ ‎свою ‎первую ‎ракету ‎«Falcon ‎1»,‏ ‎но‏ ‎уже‏ ‎заключила ‎контракты‏ ‎с ‎Пентагоном‏ ‎и ‎НАСА‏ ‎на‏ ‎запуск ‎спутников.‏ ‎Причем ‎госкомпании ‎США ‎продолжали ‎поддерживать‏ ‎SpaceX, ‎несмотря‏ ‎на‏ ‎четыре ‎неудачных ‎запуска‏ ‎подряд.

Тогда ‎в‏ ‎идеи ‎SpaceX ‎не ‎верил‏ ‎практически‏ ‎никто, ‎ну‏ ‎и ‎где‏ ‎теперь ‎эти ‎скептики? ‎А ‎инвесторы,‏ ‎которые‏ ‎могли ‎выгодно‏ ‎вложиться ‎в‏ ‎компанию ‎на ‎заре ‎её ‎становления,‏ ‎сейчас‏ ‎упиваются‏ ‎слезами, ‎рвут‏ ‎волосы ‎на‏ ‎пятой ‎точке‏ ‎и‏ ‎корят ‎своих‏ ‎советников ‎за ‎неверные ‎инвестиционные ‎рекомендации.

  • Тут‏ ‎сработало ‎то‏ ‎же‏ ‎самое: ‎если ‎государство‏ ‎верит ‎в‏ ‎проект, ‎то ‎пора ‎вкладываться,‏ ‎ибо‏ ‎в ‎NASA‏ ‎и ‎Пентагоне‏ ‎не ‎дураки ‎сидят, ‎они ‎там‏ ‎всё‏ ‎просчитали ‎же…‏ ‎Верно?


Критики ‎сомневались,‏ ‎что ‎эта ‎система ‎будет ‎работать.‏ ‎Они‏ ‎полагали,‏ ‎что ‎ни‏ ‎ракета, ‎ни‏ ‎спутники ‎не‏ ‎смогут‏ ‎выдержать ‎такие‏ ‎сильные ‎ускорения, ‎которые ‎возникают ‎в‏ ‎центрифуге, ‎и‏ ‎что‏ ‎ракету ‎просто ‎разорвёт‏ ‎на ‎части.

Да,‏ ‎это ‎так, ‎но ‎почему‏ ‎ракету‏ ‎разорвет? ‎Почему‏ ‎нет ‎скептицизма‏ ‎в ‎самой ‎возможности ‎установки ‎развивать‏ ‎скорости‏ ‎в ‎7500,‏ ‎а ‎в‏ ‎последних ‎версиях ‎все ‎8000 ‎км/ч?

  • Для‏ ‎меня‏ ‎это‏ ‎было ‎загадкой,‏ ‎или ‎уже‏ ‎появились ‎такие‏ ‎материалы,‏ ‎которые ‎способны‏ ‎выдержать ‎подобные ‎нагрузки?

Старые ‎подписчики ‎знают,‏ ‎что ‎я‏ ‎занимаюсь‏ ‎разработкой ‎карбоновых, ‎композитных‏ ‎центрифужных ‎накопителей‏ ‎энергии, ‎которые ‎имеют ‎тот‏ ‎же‏ ‎принцип ‎работы,‏ ‎что ‎и‏ ‎центрифуга ‎компании ‎SpinLaunch, ‎но ‎те‏ ‎цифры‏ ‎и ‎характеристики,‏ ‎которые ‎заявляет‏ ‎компания, ‎совершенно ‎не ‎бьются ‎с‏ ‎реальностью‏ ‎и,‏ ‎более ‎того,‏ ‎даже ‎с‏ ‎теорией ‎сопромата.

И‏ ‎что‏ ‎не ‎так?‏ ‎Начнем ‎с ‎того, ‎что ‎нет‏ ‎материалов, ‎способных‏ ‎выдерживать‏ ‎подобные ‎нагрузки ‎на‏ ‎разрыв, ‎ведь‏ ‎сила ‎(совокупность ‎сил ‎инерции,‏ ‎возникающих‏ ‎в ‎центрифуге)‏ ‎порождает ‎эффект‏ ‎центробежной ‎силы, ‎где ‎атомные ‎связи‏ ‎материала‏ ‎попросту ‎не‏ ‎выдерживают ‎нагрузок.

Компания‏ ‎заявляет, ‎что ‎все ‎нагруженные ‎части‏ ‎центрифуги‏ ‎изготовлены‏ ‎из ‎углеродного‏ ‎волокна, ‎причем‏ ‎высокопрочного ‎углеродного‏ ‎волокна,‏ ‎волокна ‎которого‏ ‎ориентированы ‎вдоль ‎нагрузки.

На ‎своих ‎красивых‏ ‎компьютерных ‎анимациях‏ ‎они‏ ‎правильно ‎показывают ‎расположение‏ ‎волокон ‎(синяя‏ ‎стрелочка), ‎но ‎вот ‎держатель‏ ‎ракеты‏ ‎(красный ‎четырехугольник),‏ ‎даже ‎если‏ ‎он ‎будет ‎изготовлен ‎из ‎такого‏ ‎же‏ ‎высокопрочного ‎углеродного‏ ‎волокна, ‎развалится‏ ‎примерно ‎на ‎скорости ‎в ‎1‏ ‎900‏ ‎км/час.


Что,‏ ‎кстати, ‎согласуется‏ ‎с ‎тем,‏ ‎что ‎они‏ ‎смогли‏ ‎реально ‎запустить‏ ‎ракету ‎на ‎скорости ‎только ‎в‏ ‎1600 ‎км/ч,‏ ‎фактически‏ ‎на ‎пределе ‎прочности‏ ‎материалов ‎установки.

Я‏ ‎рассчитал ‎предельную ‎прочность ‎материалов‏ ‎при‏ ‎вращении, ‎где‏ ‎показана ‎теоретическая‏ ‎максимальная ‎линейная ‎скорость ‎на ‎периферии‏ ‎материала,‏ ‎превышение ‎которой‏ ‎ведет ‎к‏ ‎его ‎неминуемому ‎разрушению:


Графен ‎и ‎углеродные‏ ‎нанотрубки‏ ‎выделены‏ ‎серым ‎цветом,‏ ‎так ‎как‏ ‎из ‎них‏ ‎пока‏ ‎невозможно ‎изготовление‏ ‎каких-либо ‎конструкций ‎даже ‎в ‎теории‏ ‎при ‎нынешних‏ ‎технологиях,‏ ‎следовательно, ‎они ‎не‏ ‎применимы ‎в‏ ‎промышленности.

Реально ‎существующий ‎кандидат ‎—‏ ‎это‏ ‎высокопрочное ‎углеродное‏ ‎волокно ‎с‏ ‎анизотропной ‎структурой ‎(волокна ‎ориентированы ‎вдоль‏ ‎нагрузки‏ ‎+ ‎полимерные‏ ‎матрицы). ‎Теоретический‏ ‎предел ‎тангенциального ‎напряжения ‎обеспечивает ‎ему‏ ‎линейную‏ ‎скорость‏ ‎в ‎центрифуге‏ ‎в ‎7099,2‏ ‎км/ч.

Но ‎важно‏ ‎понимать,‏ ‎что ‎изготовить‏ ‎таким ‎способом ‎можно ‎только ‎пластины,‏ ‎а ‎точнее,‏ ‎тот‏ ‎самый ‎плоский ‎ротор,‏ ‎который ‎раскручивает‏ ‎ракету:

И ‎то ‎это ‎очень‏ ‎дорогостоящая‏ ‎конструкция, ‎где‏ ‎любой ‎дефект‏ ‎снижает ‎прочность ‎на ‎десятки ‎процентов.

  • Волокна‏ ‎кевлара‏ ‎тоже ‎должны‏ ‎быть ‎ориентированы‏ ‎вдоль ‎нагрузки ‎для ‎достижения ‎теоретических‏ ‎скоростей‏ ‎в‏ ‎5691,96 ‎км/ч.

А‏ ‎изготовление ‎компонентов‏ ‎ракеты ‎и‏ ‎системы‏ ‎держателей ‎с‏ ‎ориентацией ‎волокон ‎строго ‎вдоль ‎нагрузки‏ ‎невозможно ‎из-за‏ ‎геометрии‏ ‎подобных ‎изделий.

Компания ‎показала,‏ ‎что ‎их‏ ‎ракета ‎состоит ‎из ‎углеволокна,‏ ‎и‏ ‎в ‎ней,‏ ‎разумеется, ‎нет‏ ‎нужной ‎ориентации ‎волокон, ‎и ‎это‏ ‎понятно,‏ ‎такую ‎ракету‏ ‎фактически ‎будет‏ ‎невозможно ‎сделать, ‎так ‎как ‎она‏ ‎имеет‏ ‎сферическую‏ ‎форму.

А ‎потому‏ ‎предел ‎прочности‏ ‎самой ‎ракеты‏ ‎—‏ ‎1924,2 ‎км/ч.‏ ‎Держатели ‎можно ‎сделать ‎из ‎мартенситно-стареющей‏ ‎стали ‎типа‏ ‎C350‏ ‎с ‎максимальным ‎пределом‏ ‎прочности ‎в‏ ‎2400 ‎МПа, ‎в ‎теории‏ ‎она‏ ‎должна ‎держать‏ ‎подобную ‎нагрузку.

Собственно,‏ ‎на ‎этом ‎можно ‎расходиться. ‎Про‏ ‎какие‏ ‎8000 ‎км/ч‏ ‎на ‎периферии‏ ‎ротора ‎заявляет ‎компания ‎— ‎это‏ ‎к‏ ‎разряду‏ ‎магии, ‎так‏ ‎как ‎для‏ ‎выдерживания ‎подобных‏ ‎нагрузок‏ ‎материал ‎должен‏ ‎обладать ‎прочностью ‎на ‎разрыв ‎не‏ ‎менее ‎9‏ ‎ГПа.

Всё,‏ ‎что ‎есть ‎на‏ ‎сегодня, ‎это‏ ‎углеродное ‎волокно: ‎5–7 ‎ГПа,‏ ‎кевлар:‏ ‎3–4 ‎ГПа‏ ‎и ‎высокопрочные‏ ‎стали: ‎2–3 ‎ГПа.


Но ‎на ‎этом‏ ‎проблемы‏ ‎не ‎заканчиваются.‏ ‎Что ‎такое‏ ‎8000 ‎км/ч? ‎Это ‎гиперзвуковая ‎скорость‏ ‎в‏ ‎6,7‏ ‎Маха, ‎которая‏ ‎начинается ‎не‏ ‎на ‎высоте‏ ‎20-50‏ ‎км, ‎а‏ ‎прямо ‎на ‎уровне ‎моря. ‎Такая‏ ‎ракета ‎должна‏ ‎преодолеть‏ ‎самые ‎плотные ‎слои‏ ‎атмосферы, ‎разогревая‏ ‎воздух ‎до ‎состояния ‎плазмы.

Исходя‏ ‎из‏ ‎параметров ‎ракеты,‏ ‎я ‎посчитал,‏ ‎до ‎каких ‎температур ‎она ‎будет‏ ‎разогреваться‏ ‎в ‎зависимости‏ ‎от ‎высоты‏ ‎пуска:


Для ‎понимания: ‎носовая ‎часть ‎Спейс‏ ‎шаттла‏ ‎выдерживала‏ ‎до ‎1200‏ ‎°C ‎благодаря‏ ‎армированному ‎углерод-углеродному‏ ‎(RCC)‏ ‎материалу, ‎и‏ ‎то ‎на ‎высоте ‎80 ‎км,‏ ‎где ‎мало‏ ‎кислорода.‏ ‎Далее ‎нужны ‎были‏ ‎керамические ‎теплозащитные‏ ‎плитки ‎для ‎выдерживания ‎1650‏ ‎°C.

  • А‏ ‎тут ‎нужна‏ ‎теплозащита ‎из‏ ‎вольфрама, ‎но ‎он ‎окислится ‎на‏ ‎воздухе‏ ‎и ‎разрушится‏ ‎еще ‎до‏ ‎покидания ‎ракетой ‎плотных ‎слоев ‎атмосферы.

Может,‏ ‎карбид‏ ‎тантала‏ ‎(TaC), ‎выдерживающий‏ ‎3800 ‎°C?‏ ‎Да, ‎но‏ ‎есть‏ ‎большая ‎такая‏ ‎проблема ‎— ‎максимальная ‎линейная ‎скорость‏ ‎TaC ‎в‏ ‎центрифуге‏ ‎540–720 ‎км/ч, ‎потому‏ ‎любая ‎теплозащита‏ ‎разрушится ‎еще ‎до ‎того,‏ ‎как‏ ‎ракета ‎достигнет‏ ‎оптимальной ‎скорости‏ ‎пуска.

Ну ‎и ‎самое ‎моё ‎любимое‏ ‎про‏ ‎8000 ‎км/ч‏ ‎— ‎это‏ ‎то, ‎что ‎если ‎изготовить ‎из‏ ‎такого‏ ‎чудо-материала‏ ‎маховичный ‎накопитель‏ ‎энергии, ‎то‏ ‎его ‎удельная‏ ‎энергия‏ ‎составит ‎порядка‏ ‎630 ‎Вт·ч/кг, ‎что ‎в ‎2–3‏ ‎раза ‎выше,‏ ‎чем‏ ‎у ‎литий-ионных ‎аккумуляторов.‏ ‎Революция ‎в‏ ‎энергетике!

Но ‎спустимся ‎с ‎небес‏ ‎на‏ ‎землю. ‎В‏ ‎компанию ‎уже‏ ‎вложено ‎сотни ‎миллионов ‎долларов, ‎и‏ ‎просто‏ ‎так ‎дать‏ ‎ей ‎погореть‏ ‎правительство ‎США ‎уже ‎не ‎даст.

Недавно‏ ‎стало‏ ‎известно,‏ ‎что ‎совет‏ ‎директоров ‎SpinLaunch‏ ‎назначил ‎нового‏ ‎генерального‏ ‎директора, ‎а‏ ‎основатель ‎и ‎бывший ‎генеральный ‎директор‏ ‎Джонатан ‎Янг‏ ‎покинул‏ ‎компанию ‎по ‎никому‏ ‎не ‎известным‏ ‎причинам…

Хотя ‎вы ‎уже ‎догадываетесь,‏ ‎по‏ ‎каким ‎именно…


Видимо,‏ ‎в ‎NASA‏ ‎поняли, ‎что ‎вложились ‎в ‎очередную‏ ‎фантастику‏ ‎даже ‎без‏ ‎теоретической ‎доказательной‏ ‎базы. ‎Судя ‎по ‎последним ‎данным,‏ ‎реально‏ ‎чем‏ ‎занимается ‎компания,‏ ‎так ‎это‏ ‎тестированием ‎электронных‏ ‎компонентов‏ ‎на ‎предмет‏ ‎выдерживания ‎высоких ‎перегрузок ‎(до ‎10‏ ‎000 ‎G),‏ ‎и‏ ‎о ‎полетах ‎как-то‏ ‎забыли, ‎ограничившись‏ ‎компьютерными ‎мультиками.


Тем ‎не ‎менее,‏ ‎допустим,‏ ‎компания ‎каким-то‏ ‎образом ‎реально‏ ‎достигла ‎показателей ‎скорости ‎в ‎6500‏ ‎км/ч,‏ ‎и, ‎допустим,‏ ‎зажимы ‎фиксации‏ ‎и ‎сама ‎ракета ‎каким-то ‎образом‏ ‎всё‏ ‎выдержали,‏ ‎что ‎тогда?

Напомню,‏ ‎что ‎теоретический‏ ‎предел ‎линейной‏ ‎скорости‏ ‎у ‎высокопрочного‏ ‎углеродного ‎волокна ‎с ‎анизотропной ‎структурой‏ ‎— ‎7099,2‏ ‎км/ч,‏ ‎а ‎6500 ‎км/ч‏ ‎выбрано, ‎так‏ ‎как ‎они ‎ранее ‎заявляли,‏ ‎что‏ ‎уже ‎запускали‏ ‎объекты ‎с‏ ‎такой ‎скоростью ‎в ‎бетонную ‎стену.

Но‏ ‎температура‏ ‎ракеты, ‎которая‏ ‎будет ‎лететь‏ ‎сквозь ‎плотные ‎слои ‎атмосферы, ‎всё‏ ‎равно‏ ‎будет‏ ‎выше ‎предельной‏ ‎прочности ‎любых‏ ‎теплозащитных ‎материалов.


6500 км/ч‏ ‎—‏ ‎это ‎5,45‏ ‎Маха, ‎и ‎на ‎таких ‎скоростях‏ ‎доминируют ‎ударные‏ ‎волны‏ ‎и ‎ионизация ‎воздуха.

Углеродное‏ ‎волокно ‎обладает‏ ‎высокой ‎термостойкостью ‎только ‎в‏ ‎инертной‏ ‎среде ‎(например,‏ ‎в ‎вакууме‏ ‎или ‎азоте), ‎но ‎в ‎атмосфере,‏ ‎насыщенной‏ ‎кислородом, ‎при‏ ‎высоких ‎температурах‏ ‎оно ‎окисляется ‎и ‎быстро ‎разрушается.

На‏ ‎высоте‏ ‎до‏ ‎20 ‎км‏ ‎без ‎дополнительной‏ ‎теплозащиты ‎углеволокно‏ ‎начинает‏ ‎окисляться ‎при‏ ‎температуре ‎всего ‎в ‎400°C ‎(в‏ ‎присутствии ‎кислорода),‏ ‎а‏ ‎при ‎температуре ‎от‏ ‎1500°C ‎полностью‏ ‎деградирует ‎за ‎секунды.

В ‎реальности‏ ‎температура‏ ‎ракеты, ‎изготовленной‏ ‎из ‎углеродного‏ ‎волокна, ‎не ‎должна ‎превышать ‎400‏ ‎°C‏ ‎на ‎высоте‏ ‎до ‎20‏ ‎км, ‎а ‎учитывая ‎это, ‎её‏ ‎максимальная‏ ‎скорость‏ ‎не ‎должна‏ ‎превышать ‎4500‏ ‎км/ч. ‎Но‏ ‎опять-таки‏ ‎подобные ‎скорости‏ ‎нереалистичные.

Композитная ‎ракета, ‎которую ‎представили ‎в‏ ‎компании, ‎теоретически‏ ‎способна‏ ‎выдержать ‎на ‎пределе‏ ‎своих ‎возможностей‏ ‎скорость ‎в ‎1900 ‎км/ч‏ ‎в‏ ‎центрифуге, ‎дальше‏ ‎её ‎волокна‏ ‎начнут ‎разрушаться, ‎а ‎эта ‎скорость‏ ‎близка‏ ‎к ‎той,‏ ‎которую ‎реально‏ ‎достигли ‎SpinLaunch ‎при ‎самом ‎удачном‏ ‎своём‏ ‎испытании,‏ ‎порядка ‎1600‏ ‎км/ч.


Тогда, ‎судя‏ ‎по ‎формуле‏ ‎Циолковского,‏ ‎учитывая ‎гравитационные‏ ‎и ‎аэродинамические ‎потери, ‎при ‎включении‏ ‎метан-кислородного ‎ракетного‏ ‎двигателя‏ ‎на ‎высоте ‎10–12‏ ‎км, ‎то‏ ‎для ‎вывода ‎на ‎НОО‏ ‎200‏ ‎кг ‎полезной‏ ‎нагрузки ‎понадобится‏ ‎израсходовать ‎минимум ‎10811 ‎кг ‎топлива.

Стартовая‏ ‎масса‏ ‎ракеты ‎составит‏ ‎около ‎11500‏ ‎кг, ‎с ‎учетом ‎массы ‎топлива,‏ ‎конструкции‏ ‎и‏ ‎полезной ‎нагрузки.

И‏ ‎тут ‎начинаются‏ ‎странности. ‎Ракета‏ ‎SpaceX‏ ‎Falcon ‎9,‏ ‎с ‎которой ‎компания ‎SpinLaunch ‎желает‏ ‎конкурировать, ‎получается‏ ‎дешевле:

  • Полезная‏ ‎нагрузка ‎на ‎НОО:‏ ‎15600 ‎кг‏ ‎с ‎возвратом ‎первой ‎ступени;
  • Стартовая‏ ‎масса:‏ ‎549054 ‎кг;
  • Масса‏ ‎топлива ‎(RP-1‏ ‎+ ‎жидкий ‎кислород): ‎395700 ‎кг.

Банально‏ ‎делим‏ ‎549054 ‎на‏ ‎15600, ‎получаем‏ ‎35,19 ‎кг ‎на ‎вывод ‎1‏ ‎кг‏ ‎полезной‏ ‎нагрузки.

Для ‎SpinLaunch‏ ‎показатель ‎будет‏ ‎следующий: ‎11500/200‏ ‎=‏ ‎57,5 ‎кг‏ ‎на ‎вывод ‎1 ‎кг ‎полезной‏ ‎нагрузки ‎+‏ ‎затраты‏ ‎на ‎электроэнергию ‎на‏ ‎работу ‎центрифуги.

Тут,‏ ‎как ‎говорится, ‎комментарии ‎уже‏ ‎излишни.‏ ‎Тем ‎не‏ ‎менее ‎я‏ ‎вынужден ‎согласиться ‎с ‎инвесторами, ‎поверившими‏ ‎в‏ ‎эту ‎идею,‏ ‎ведь ‎99%‏ ‎стартапов ‎прогорает, ‎но ‎1% ‎успешных‏ ‎покрывает‏ ‎все‏ ‎убытки ‎с‏ ‎лихвой, ‎это‏ ‎уже ‎доказано.

Тут‏ ‎я‏ ‎даже ‎сам‏ ‎пустил ‎скупую ‎слезу, ‎ибо ‎при‏ ‎таком ‎подходе‏ ‎к‏ ‎финансированию ‎технических ‎стартапов,‏ ‎как ‎в‏ ‎США, ‎то ‎тоже ‎признаю,‏ ‎что‏ ‎если ‎бы‏ ‎я ‎начал‏ ‎реализовывать ‎свой ‎проект ‎по ‎магнитоэнергетике‏ ‎не‏ ‎в ‎России,‏ ‎а ‎в‏ ‎США, ‎то ‎давно ‎бы ‎его‏ ‎реализовал.‏ ‎А‏ ‎меня ‎ведь‏ ‎туда ‎звали‏ ‎в ‎2011‏ ‎году,‏ ‎даже ‎с‏ ‎видом ‎на ‎жительство…

Но ‎я ‎понадеялся‏ ‎на ‎хваленое‏ ‎«Сколково»,‏ ‎притащил ‎туда ‎работоспособный‏ ‎прототип ‎пассивного‏ ‎магнитного ‎подшипника, ‎распределяющую ‎99,9%‏ ‎массы‏ ‎в ‎магнитном‏ ‎поле, ‎на‏ ‎суд ‎так ‎называемым ‎«экспертам» ‎Сколково.

Эти‏ ‎эксперты,‏ ‎глядя ‎на‏ ‎установку, ‎не‏ ‎поверили ‎своим ‎глазам ‎и ‎постановили,‏ ‎что‏ ‎это‏ ‎невозможно. ‎Магия,‏ ‎короче…

Это, ‎конечно,‏ ‎был ‎треш‏ ‎высшей‏ ‎категории, ‎о‏ ‎чем ‎я ‎писал ‎тут:

В ‎чём‏ ‎великая ‎тайна‏ ‎Сколково?‏ ‎Этому ‎инновационному ‎центру‏ ‎уже ‎10‏ ‎лет, ‎а ‎толку ‎нет…
В‏ ‎чём‏ ‎смысл ‎Инновационного‏ ‎Центра ‎«Сколково»?

Наверно,‏ ‎поэтому ‎в ‎России ‎до ‎сих‏ ‎пор‏ ‎нет ‎своих‏ ‎Илонов ‎Масков,‏ ‎парадигма ‎другая, ‎ведь ‎нужно ‎вкладываться‏ ‎в‏ ‎перспективные‏ ‎проекты, ‎а‏ ‎в ‎«Сколково»,‏ ‎как ‎выяснилось,‏ ‎наоборот,‏ ‎воровали ‎бюджетные‏ ‎деньги. ‎Хорошо, ‎что ‎после ‎моих‏ ‎материалов ‎эту‏ ‎конторку‏ ‎подчистил ‎Мишустин.

Но ‎всё‏ ‎равно ‎жаль,‏ ‎что ‎так ‎вышло. ‎Касательно‏ ‎моего‏ ‎проекта, ‎то‏ ‎он ‎на‏ ‎последней ‎фазе ‎испытаний, ‎слишком ‎сложный‏ ‎был‏ ‎НИОКР. ‎Делаю‏ ‎я ‎его‏ ‎за ‎свой ‎счет, ‎а ‎бан‏ ‎этого‏ ‎канала сильно‏ ‎подорвал ‎финансирование‏ ‎этого ‎проекта,‏ ‎ибо ‎деньги‏ ‎от‏ ‎монетизации ‎шли‏ ‎туда, ‎но ‎куда ‎же ‎без‏ ‎трудностей…

Как-то ‎так…

Смотреть: 1 мин
logo Кочетов Алексей

Проект космопушки Саддама Хусейна «Из пушки в космос»

Что, ‎если‏ ‎человечество, ‎в ‎своём ‎неутолимом ‎стремлении‏ ‎к ‎звёздам,‏ ‎променяло‏ ‎ракетные ‎технологии ‎на‏ ‎грубую ‎мощь‏ ‎пушечного ‎выстрела?

Как ‎мы ‎обычно‏ ‎себе‏ ‎это ‎представляем?‏ ‎Гигантская ‎пушка,‏ ‎чей ‎ствол ‎возвышается ‎над ‎облаками,‏ ‎выстреливает‏ ‎снаряд ‎в‏ ‎бескрайние ‎просторы‏ ‎космоса, ‎словно ‎бросая ‎вызов ‎законам‏ ‎природы‏ ‎и‏ ‎экономической ‎целесообразности…

И‏ ‎действительно, ‎на‏ ‎заре ‎космической‏ ‎эры‏ ‎вывод ‎полезной‏ ‎нагрузки ‎на ‎орбиту ‎Земли ‎путем‏ ‎выстрела ‎из‏ ‎пушки‏ ‎реально ‎рассматривался ‎как‏ ‎альтернатива ‎ракетным‏ ‎технологиям.

Потому ‎история ‎пушек, ‎стремящихся‏ ‎к‏ ‎звёздам, ‎начинается‏ ‎не ‎в‏ ‎фантазиях, ‎а ‎в ‎архивах ‎XX‏ ‎века.‏ ‎В ‎1960-х‏ ‎годах ‎проект‏ ‎HARP ‎(High ‎Altitude ‎Research ‎Project),‏ ‎детище‏ ‎канадского‏ ‎инженера ‎Джеральда‏ ‎Булла, ‎доказал,‏ ‎что ‎пушка‏ ‎может‏ ‎бросить ‎вызов‏ ‎гравитации.

180-килограммовый ‎снаряд, ‎выпущенный ‎из ‎406-мм‏ ‎пушки ‎с‏ ‎длиной‏ ‎ствола ‎около ‎36‏ ‎метров, ‎взлетал‏ ‎на ‎высоту ‎в ‎180‏ ‎километров.‏ ‎Правда, ‎скорость‏ ‎снаряда ‎была‏ ‎недостаточной ‎для ‎того, ‎чтобы ‎он‏ ‎вышел‏ ‎на ‎орбиту,‏ ‎так, ‎при‏ ‎необходимых ‎7,8 ‎км/с ‎снаряд ‎на‏ ‎высоте‏ ‎180‏ ‎км ‎летел‏ ‎со ‎скоростью‏ ‎1,88 ‎км/с.


Джеральд‏ ‎Булл‏ ‎мечтал ‎о‏ ‎большем: ‎о ‎стволах ‎длиной ‎в‏ ‎километры, ‎о‏ ‎снарядах,‏ ‎что ‎станут ‎спутниками.‏ ‎Но ‎проект‏ ‎заглох, ‎оставив ‎лишь ‎эхо‏ ‎выстрелов‏ ‎и ‎гору‏ ‎несбывшихся ‎надежд.‏ ‎Почему? ‎Ответ ‎прост ‎и ‎беспощаден:‏ ‎физика.‏ ‎Для ‎орбиты‏ ‎нужна ‎не‏ ‎только ‎высота, ‎но ‎и ‎горизонтальная‏ ‎скорость,‏ ‎которой‏ ‎пушка ‎дать‏ ‎не ‎могла.‏ ‎Снаряд, ‎взлетев‏ ‎вверх,‏ ‎падал ‎обратно,‏ ‎как ‎камень, ‎брошенный ‎в ‎небо.

Как‏ ‎только ‎не‏ ‎пытались‏ ‎приспособить ‎пушку ‎для‏ ‎вывода ‎спутников‏ ‎на ‎орбиту, ‎экспериментировали ‎с‏ ‎различными‏ ‎взрывчатыми ‎материалами‏ ‎и ‎газами,‏ ‎где ‎пороховые ‎газы ‎заменялись ‎на‏ ‎водород‏ ‎или ‎гелий,‏ ‎что ‎позволяло‏ ‎теоретически ‎повысить ‎скорость ‎снаряда ‎до‏ ‎3,5‏ ‎км/с.

Выстрел‏ ‎осуществлялся ‎специальными‏ ‎снарядами ‎«Martlet»,‏ ‎представляющими ‎из‏ ‎себя‏ ‎серию ‎гибридных‏ ‎снарядов, ‎сочетающих ‎в ‎себе ‎элементы‏ ‎артиллерийских ‎боеприпасов‏ ‎и‏ ‎ракетных ‎технологий.

Основная ‎идея‏ ‎заключалась ‎в‏ ‎использовании ‎пушки ‎для ‎придания‏ ‎снаряду‏ ‎начальной ‎скорости,‏ ‎а ‎затем‏ ‎активации ‎встроенного ‎ракетного ‎двигателя ‎для‏ ‎достижения‏ ‎орбитальной ‎скорости.‏ ‎Это ‎позволяло‏ ‎снизить ‎массу ‎топлива, ‎необходимого ‎для‏ ‎вывода‏ ‎на‏ ‎орбиту, ‎и,‏ ‎теоретически, ‎сделать‏ ‎запуски ‎более‏ ‎экономичными‏ ‎по ‎сравнению‏ ‎с ‎ракетоносителями ‎того ‎времени.

Серия ‎«Martlet»‏ ‎включала ‎несколько‏ ‎версий,‏ ‎каждая ‎из ‎которых‏ ‎имела ‎свои‏ ‎особенности ‎и ‎предназначение:

  • Martlet-1: ‎Ранние‏ ‎тестовые‏ ‎снаряды, ‎предназначенные‏ ‎для ‎отработки‏ ‎базовых ‎технологий.


  • Martlet-2: ‎Наиболее ‎известная ‎версия,‏ ‎представлявшая‏ ‎собой ‎твердотельный‏ ‎снаряд ‎массой‏ ‎около ‎180 ‎кг, ‎способный ‎нести‏ ‎полезную‏ ‎нагрузку‏ ‎до ‎18‏ ‎кг ‎на‏ ‎высоту ‎до‏ ‎180‏ ‎км. ‎Это‏ ‎была ‎суборбитальная ‎версия, ‎использовавшаяся ‎для‏ ‎атмосферных ‎исследований‏ ‎на‏ ‎которой ‎и ‎удалось‏ ‎достигнуть ‎подобных‏ ‎показателей.
  • Martlet-3: ‎Более ‎продвинутая ‎версия,‏ ‎оснащённая‏ ‎ракетным ‎двигателем,‏ ‎который ‎должен‏ ‎был ‎включаться ‎после ‎выхода ‎из‏ ‎ствола‏ ‎для ‎достижения‏ ‎больших ‎высот.‏ ‎Эта ‎версия ‎рассматривалась ‎как ‎промежуточный‏ ‎шаг‏ ‎к‏ ‎орбитальным ‎запускам.
  • Martlet-4:‏ ‎Концептуальная ‎версия,‏ ‎предназначенная ‎для‏ ‎вывода‏ ‎небольших ‎спутников‏ ‎на ‎орбиту. ‎Именно ‎эта ‎версия‏ ‎была ‎наиболее‏ ‎близка‏ ‎к ‎реализации ‎идеи‏ ‎орбитального ‎запуска.


Наиболее‏ ‎реально ‎значимой ‎для ‎орбитальных‏ ‎запусков‏ ‎была ‎версия‏ ‎Martlet-2G ‎(или‏ ‎её ‎вариации, ‎такие ‎как ‎Martlet-3A),‏ ‎которая‏ ‎представляла ‎собой‏ ‎снаряд ‎с‏ ‎интегрированным ‎ракетным ‎двигателем. ‎После ‎запуска‏ ‎из‏ ‎пушки‏ ‎такой ‎снаряд‏ ‎должен ‎был‏ ‎использовать ‎ракетный‏ ‎двигатель‏ ‎для ‎достижения‏ ‎орбитальной ‎скорости ‎(около ‎7,8 ‎км/с).‏ ‎Согласно ‎расчётам‏ ‎и‏ ‎намерениям ‎Булла, ‎эти‏ ‎снаряды ‎могли‏ ‎бы ‎доставить ‎на ‎низкую‏ ‎околоземную‏ ‎орбиту ‎(НОО)‏ ‎небольшой ‎спутник‏ ‎массой ‎около ‎2,3 ‎кг.

Однако ‎ракетные‏ ‎технологии‏ ‎СССР ‎и‏ ‎США ‎развивались‏ ‎куда ‎быстрее, ‎чем ‎космическая ‎артиллерия,‏ ‎и‏ ‎проект‏ ‎HARP ‎был‏ ‎свёрнут ‎в‏ ‎1967 ‎году‏ ‎из-за‏ ‎финансовых ‎трудностей‏ ‎и ‎политических ‎изменений. ‎США ‎и‏ ‎Канада ‎утратили‏ ‎интерес‏ ‎к ‎программе, ‎особенно‏ ‎на ‎фоне‏ ‎полетов ‎советских ‎ракетоносителей ‎Р-7‏ ‎и‏ ‎американских ‎«Атлас».

А‏ ‎пушка ‎и‏ ‎по ‎сей ‎день ‎ржавеет ‎заброшенной‏ ‎на‏ ‎полигоне:



Но ‎саму‏ ‎идею ‎Джеральд‏ ‎Булл ‎не ‎забросил, ‎двадцать ‎лет‏ ‎спустя‏ ‎его‏ ‎разработки ‎возродились‏ ‎в ‎Ираке‏ ‎под ‎названием‏ ‎«Проект‏ ‎Вавилон».

Это ‎был‏ ‎прототип ‎пушки ‎с ‎46-метровым ‎стволом‏ ‎и ‎калибром‏ ‎350‏ ‎мм ‎под ‎названием‏ ‎«Младенец ‎Вавилон»,‏ ‎который ‎в ‎тестовом ‎варианте‏ ‎стрелял‏ ‎свинцовыми ‎снарядами.


Но‏ ‎«Вавилон» ‎—‏ ‎мечта ‎Булла ‎— ‎должна ‎была‏ ‎стать‏ ‎куда ‎более‏ ‎мощной ‎системой:‏ ‎ствол ‎156 ‎метров ‎длины ‎и‏ ‎метр‏ ‎в‏ ‎диаметре, ‎способная‏ ‎запускать ‎600-килограммовые‏ ‎снаряды ‎на‏ ‎620‏ ‎километров ‎высоту.

Суборбитальный‏ ‎полёт ‎был ‎бы ‎впечатляющий, ‎но‏ ‎бесполезный ‎для‏ ‎устойчивой‏ ‎орбиты ‎без ‎горизонтальной‏ ‎скорости. ‎Саддам‏ ‎Хусейн ‎видел ‎в ‎ней‏ ‎символ‏ ‎мощи, ‎потому‏ ‎щедро ‎спонсировал‏ ‎как ‎Булла, ‎так ‎и ‎сам‏ ‎проект.

«Большой»‏ ‎Вавилон ‎должен‏ ‎был ‎стать‏ ‎проектом, ‎который ‎осуществил ‎бы ‎мечту‏ ‎Булла.‏ ‎Устройство‏ ‎весом ‎в‏ ‎2100 ‎тонн,‏ ‎придавая ‎начальную‏ ‎скорость‏ ‎полета ‎снаряда‏ ‎в ‎4 ‎км/с, ‎с ‎учетом‏ ‎наработок ‎по‏ ‎снарядам‏ ‎«Martlet», ‎могло ‎бы‏ ‎обеспечивать ‎вывод‏ ‎полезной ‎нагрузки ‎до ‎15‏ ‎кг.

Снаряду‏ ‎«Вавилона» ‎требуется‏ ‎на ‎2270‏ ‎м/с ‎меньше ‎скорости, ‎чем ‎для‏ ‎HARP.‏ ‎Это ‎позволяет‏ ‎увеличить ‎полезную‏ ‎нагрузку.


Но, ‎не ‎вдаваясь ‎в ‎подробности,‏ ‎по‏ ‎мере‏ ‎готовности ‎пушка‏ ‎начала ‎переквалифицироваться‏ ‎из ‎гражданско-космической‏ ‎в‏ ‎военную ‎сверхдальнобойную‏ ‎артиллерию, ‎а ‎в ‎1990 ‎году‏ ‎Булл ‎был‏ ‎убит,‏ ‎«Вавилон» ‎достроить ‎без‏ ‎него ‎так‏ ‎и ‎не ‎смогли, ‎и‏ ‎всё‏ ‎разлетелось ‎на‏ ‎куски ‎под‏ ‎ударами ‎войны ‎и ‎санкций.

Эти ‎истории‏ ‎—‏ ‎не ‎хроника‏ ‎неудач, ‎а‏ ‎зеркало, ‎отражающее ‎пределы ‎дерзости, ‎когда‏ ‎амбиции‏ ‎сталкиваются‏ ‎с ‎реальностью.

Однако‏ ‎идея ‎космической‏ ‎пушки ‎была‏ ‎слишком‏ ‎заманчивой, ‎чтобы‏ ‎от ‎неё ‎просто ‎так ‎отказаться,‏ ‎и ‎в‏ ‎1990-е‏ ‎годы ‎в ‎США‏ ‎продолжались ‎исследования‏ ‎технологий, ‎позволяющих ‎достигать ‎околокосмических‏ ‎скоростей‏ ‎с ‎использованием‏ ‎артиллерийских ‎систем.

Одним‏ ‎из ‎ключевых ‎проектов ‎в ‎этой‏ ‎области‏ ‎стал ‎SHARP‏ ‎(Super ‎HARP),‏ ‎реализованный ‎на ‎базе ‎Национальной ‎лаборатории‏ ‎имени‏ ‎Лоуренса‏ ‎в ‎Калифорнии.


Этот‏ ‎проект ‎представлял‏ ‎собой ‎развитие‏ ‎идей,‏ ‎заложенных ‎в‏ ‎более ‎раннем ‎проекте ‎HARP, ‎и‏ ‎был ‎направлен‏ ‎на‏ ‎совершенствование ‎технологий ‎запуска‏ ‎снарядов ‎с‏ ‎использованием ‎пушек ‎на ‎легких‏ ‎газах.

В‏ ‎рамках ‎экспериментов‏ ‎SHARP ‎была‏ ‎разработана ‎и ‎построена ‎пушка, ‎использующая‏ ‎легкие‏ ‎газы ‎(водород‏ ‎или ‎гелий),‏ ‎которая ‎успешно ‎разогнала ‎снаряд ‎массой‏ ‎5‏ ‎кг‏ ‎до ‎скорости‏ ‎3 ‎км/с.


Пушки‏ ‎на ‎легких‏ ‎газах‏ ‎работают ‎по‏ ‎принципу ‎пневматических ‎систем, ‎но ‎вместо‏ ‎воздуха ‎в‏ ‎них‏ ‎сжимается ‎газ ‎с‏ ‎низкой ‎плотностью‏ ‎— ‎чаще ‎всего ‎водород‏ ‎или‏ ‎гелий. ‎Низкая‏ ‎молекулярная ‎масса‏ ‎этих ‎газов ‎обеспечивает ‎более ‎высокую‏ ‎скорость‏ ‎звука ‎в‏ ‎среде, ‎что‏ ‎позволяет ‎значительно ‎увеличить ‎скорость ‎истечения‏ ‎газа‏ ‎и,‏ ‎соответственно, ‎скорость‏ ‎разгона ‎снаряда.‏ ‎Перед ‎выстрелом‏ ‎газ‏ ‎сжимается, ‎а‏ ‎затем ‎резко ‎расширяется, ‎толкая ‎снаряд‏ ‎по ‎стволу‏ ‎с‏ ‎огромной ‎силой.
  • Например, ‎скорость‏ ‎звука ‎в‏ ‎водороде ‎составляет ‎1284 ‎м/с,‏ ‎а‏ ‎в ‎воздухе‏ ‎всего ‎331‏ ‎м/с. ‎При ‎сжатии ‎водорода ‎до‏ ‎700‏ ‎атмосфер ‎скорость‏ ‎звука ‎возрастает‏ ‎до ‎3220 ‎м/с.


Такие ‎пушки ‎способны‏ ‎разгонять‏ ‎снаряды‏ ‎до ‎скоростей‏ ‎6 ‎км/с,‏ ‎что ‎делает‏ ‎их‏ ‎важным ‎инструментом‏ ‎для ‎моделирования ‎высокоскоростных ‎столкновений.

На ‎основе‏ ‎экспериментов ‎SHARP‏ ‎был‏ ‎предложен ‎проект ‎пушки,‏ ‎способной ‎теоретически‏ ‎разгонять ‎реактивный ‎снаряд ‎до‏ ‎скорости‏ ‎11 ‎км/с,‏ ‎что ‎весьма‏ ‎близко ‎к ‎скорости ‎убегания ‎с‏ ‎Земли‏ ‎(вторая ‎космическая),‏ ‎что ‎открывало‏ ‎перспективы ‎для ‎использования ‎такой ‎технологии‏ ‎в‏ ‎качестве‏ ‎альтернативы ‎традиционным‏ ‎ракетным ‎запускам.


Такая‏ ‎пушка ‎с‏ ‎длиной‏ ‎ствола ‎в‏ ‎1100 ‎метров ‎должна ‎устанавливаться ‎ниже‏ ‎уровня ‎моря.‏ ‎Это‏ ‎связано ‎с ‎необходимостью‏ ‎минимизировать ‎влияние‏ ‎атмосферного ‎давления ‎и ‎создать‏ ‎стабильные‏ ‎условия ‎для‏ ‎запуска.

Установка ‎ниже‏ ‎уровня ‎моря ‎также ‎может ‎помочь‏ ‎в‏ ‎охлаждении ‎системы‏ ‎и ‎снижении‏ ‎нагрузки ‎на ‎конструкцию.

Однако ‎дальнейшие ‎работы‏ ‎по‏ ‎созданию‏ ‎пушки ‎для‏ ‎околокосмических ‎скоростей‏ ‎остались ‎нереализованными‏ ‎из-за‏ ‎отсутствия ‎финансирования.‏ ‎Тем ‎не ‎менее ‎результаты ‎SHARP‏ ‎продолжают ‎влиять‏ ‎на‏ ‎исследования ‎в ‎области‏ ‎альтернативных ‎методов‏ ‎космических ‎запусков

Одних ‎стартапов ‎появилось‏ ‎с‏ ‎десяток, ‎самые‏ ‎известные ‎—‏ ‎это ‎американский ‎стартап ‎Quicklaunch, ‎основанный‏ ‎бывшим‏ ‎руководителем ‎программы‏ ‎Super ‎HARP‏ ‎доктором ‎Джон ‎У. ‎Хантером, ‎стремящийся‏ ‎построить‏ ‎пушку,‏ ‎способной ‎вывести‏ ‎мини-одноступенчатую ‎ракету‏ ‎на ‎НОО‏ ‎со‏ ‎стоимостью ‎1100‏ ‎долларов ‎за ‎1 ‎кг ‎полезной‏ ‎нагрузки.

Отдельные ‎компоненты‏ ‎современной‏ ‎электроники ‎способны ‎выдержать‏ ‎перегрузку ‎в‏ ‎30 ‎000 ‎G.


Реализация ‎этой‏ ‎идеи‏ ‎требует ‎финансирования‏ ‎в ‎размере‏ ‎1-3 ‎миллиарда ‎долларов, ‎где ‎целью‏ ‎проекта‏ ‎является ‎создание‏ ‎работоспособной ‎системы‏ ‎из ‎пушки ‎и ‎реактивного ‎снаряда,‏ ‎способного‏ ‎выводить‏ ‎на ‎НОО‏ ‎полезную ‎нагрузку‏ ‎массой ‎в‏ ‎450‏ ‎кг.

Проект ‎не‏ ‎пошел, ‎и ‎стартап ‎перестал ‎функционировать‏ ‎в ‎2016‏ ‎году,‏ ‎однако ‎после ‎Джоном‏ ‎Хантером ‎был‏ ‎создан ‎другой ‎стартап ‎«Green‏ ‎Launch»,‏ ‎который, ‎используя‏ ‎наработки ‎Quicklaunch,‏ ‎получил ‎некое ‎финансирование ‎от ‎частных‏ ‎инвесторов‏ ‎для ‎реализации‏ ‎подобной ‎идеи.

Был‏ ‎изготовлен ‎ствол ‎пушки, ‎который ‎заполнялся‏ ‎смесью‏ ‎из‏ ‎водорода, ‎гелия‏ ‎и ‎кислорода,‏ ‎то ‎есть‏ ‎использующей‏ ‎легкие ‎газы‏ ‎для ‎придания ‎снаряду ‎высоких ‎скоростей.



И‏ ‎даже ‎протестирована‏ ‎в‏ ‎2021 ‎году:



К

2025 году ‎пушка‏ ‎уже ‎должна‏ ‎была ‎выводить ‎на ‎орбиту‏ ‎Земли‏ ‎полезную ‎нагрузку,‏ ‎но, ‎видимо,‏ ‎пошло ‎что-то ‎не ‎так, ‎и‏ ‎больше‏ ‎никаких ‎испытаний‏ ‎публично ‎стартап‏ ‎не ‎разглашает.

  • О ‎последнем ‎испытательном ‎выстреле‏ ‎известно‏ ‎немного.‏ ‎Снаряд ‎массой‏ ‎12,7 ‎кг‏ ‎развил ‎скорость‏ ‎в‏ ‎1029 ‎м/с,‏ ‎поднявшись ‎на ‎30 ‎км.

Это ‎был‏ ‎тест ‎первой‏ ‎фазы,‏ ‎целью ‎которой ‎было‏ ‎продемонстрировать ‎суборбитальный‏ ‎полет ‎и ‎подготовить ‎почву‏ ‎для‏ ‎будущих ‎запусков‏ ‎на ‎высоту‏ ‎более ‎100 ‎км ‎(линия ‎Кармана,‏ ‎граница‏ ‎космоса). ‎Планировалось,‏ ‎что ‎во‏ ‎второй ‎фазе ‎они ‎достигнут ‎высоты‏ ‎200‏ ‎км,‏ ‎а ‎в‏ ‎фазе ‎3‏ ‎— ‎доставят‏ ‎1‏ ‎фунт ‎(0,45‏ ‎кг) ‎на ‎низкую ‎околоземную ‎орбиту,‏ ‎с ‎последующим‏ ‎масштабированием‏ ‎до ‎100-1000 ‎фунтов‏ ‎(45-454 ‎кг).

Была‏ ‎заметка, ‎что ‎армия ‎США‏ ‎проявляет‏ ‎интерес ‎к‏ ‎такой ‎системе,‏ ‎и, ‎видимо, ‎интерес ‎был ‎достаточно‏ ‎сильным,‏ ‎что ‎публикация‏ ‎исследований ‎прекратилась.

Но‏ ‎вы ‎не ‎просто ‎так ‎подписались‏ ‎на‏ ‎мой‏ ‎канал. ‎Сейчас‏ ‎мы ‎всё‏ ‎вычислим. ‎Ибо‏ ‎полученные‏ ‎результаты ‎можно‏ ‎экстраполировать, ‎чтобы ‎вычислить ‎размеры ‎и‏ ‎мощность ‎пушки,‏ ‎которая‏ ‎сможет ‎выводить ‎полтонны‏ ‎на ‎орбиту.

Итак,‏ ‎на ‎основе ‎доступной ‎информации‏ ‎известно,‏ ‎что ‎длина‏ ‎пускового ‎ствола‏ ‎составляет ‎примерно ‎16,5 ‎метра. ‎Диаметр‏ ‎ствола‏ ‎не ‎указан,‏ ‎но, ‎учитывая,‏ ‎что ‎они ‎используют ‎оборудование, ‎связанное‏ ‎с‏ ‎проектом‏ ‎HARP, ‎можно‏ ‎предположить, ‎что‏ ‎диаметр ‎составляет‏ ‎примерно‏ ‎40,6 ‎см.

Это‏ ‎предположение ‎основано ‎на ‎том, ‎что‏ ‎HARP ‎использовал‏ ‎16-дюймовую‏ ‎пушку ‎для ‎своих‏ ‎запусков, ‎а‏ ‎Green ‎Launch ‎проводит ‎тесты‏ ‎на‏ ‎том ‎же‏ ‎полигоне ‎Yuma‏ ‎Proving ‎Ground, ‎где ‎находится ‎оригинальное‏ ‎оборудование‏ ‎HARP.


Для ‎достижения‏ ‎орбиты ‎снаряду‏ ‎нужно ‎придать ‎достаточную ‎кинетическую ‎энергию‏ ‎в‏ ‎15,21‏ ‎ГДж ‎для‏ ‎полезной ‎нагрузки‏ ‎в ‎500‏ ‎кг‏ ‎при ‎скорости‏ ‎7800 ‎м/с.

  • Это ‎в ‎2258 ‎раз‏ ‎больше, ‎чем‏ ‎было‏ ‎достигнуто ‎в ‎ходе‏ ‎испытаний ‎первой‏ ‎фазы.

Такое ‎масштабирование ‎энергии ‎включает‏ ‎в‏ ‎себя ‎корректировки‏ ‎длины ‎ствола,‏ ‎диаметра, ‎давления ‎и ‎ускорения, ‎каждое‏ ‎из‏ ‎которых ‎ограничено‏ ‎материальными ‎и‏ ‎практическими ‎пределами.

Однако ‎из-за ‎атмосферного ‎сопротивления‏ ‎запуск‏ ‎на‏ ‎такой ‎скорости‏ ‎с ‎земли‏ ‎невозможен, ‎максимум‏ ‎6‏ ‎км/с, ‎поэтому‏ ‎без ‎комбинации ‎пушки ‎и ‎ракетного‏ ‎двигателя ‎не‏ ‎обойтись.

  • И‏ ‎того, ‎чтобы ‎запустить‏ ‎снаряд ‎в‏ ‎500 ‎кг ‎на ‎НОО,‏ ‎потребуется‏ ‎увеличение ‎длины‏ ‎ствола ‎до‏ ‎950 ‎метров.

Почти ‎километровый ‎ствол, ‎заполненный‏ ‎водородом,‏ ‎позволит ‎достичь‏ ‎орбитальной ‎скорости‏ ‎около ‎6 ‎км/с. ‎Диаметр ‎также‏ ‎необходимо‏ ‎увеличить‏ ‎до ‎1‏ ‎метра, ‎чтобы‏ ‎запускать ‎столь‏ ‎тяжелую‏ ‎полезную ‎нагрузку.


Да‏ ‎и ‎вообще, ‎километровый ‎ствол ‎—‏ ‎это ‎тоже‏ ‎весьма‏ ‎непрактичная ‎конструкция, ‎к‏ ‎тому ‎же‏ ‎будет ‎сильно ‎нагружена ‎и‏ ‎деформироваться‏ ‎во ‎время‏ ‎выстрела.

  • Чем ‎длиннее‏ ‎ствол, ‎тем ‎меньше ‎ускорения ‎и‏ ‎давления‏ ‎потребуется ‎для‏ ‎достижения ‎той‏ ‎же ‎скорости. ‎Чем ‎больше ‎диаметр‏ ‎ствола,‏ ‎тем‏ ‎ниже ‎требуется‏ ‎давление ‎по‏ ‎сравнению ‎с‏ ‎меньшими‏ ‎диаметрами ‎при‏ ‎том ‎же ‎ускорении.


Взяв ‎технические ‎характеристики‏ ‎этих ‎проектов,‏ ‎можно‏ ‎рассчитать ‎параметры ‎пушки,‏ ‎которая ‎сможет‏ ‎вывести ‎одноступенчатую ‎ракету ‎массой‏ ‎в‏ ‎500 ‎кг‏ ‎на ‎низкую‏ ‎околоземную ‎орбиту ‎(200 ‎км).

При ‎диаметре‏ ‎ствола‏ ‎1 ‎метр‏ ‎и ‎длине‏ ‎в ‎150, ‎300 ‎и ‎950‏ ‎метров‏ ‎получаем‏ ‎следующие ‎расчетные‏ ‎характеристики:


Если ‎учитывать‏ ‎трение, ‎нагрев,‏ ‎переменное‏ ‎давление ‎газа‏ ‎и ‎КПД ‎системы, ‎стремящиеся ‎уменьшить‏ ‎итоговую ‎скорость‏ ‎снаряда,‏ ‎то ‎реальное ‎давление‏ ‎в ‎стволе‏ ‎будет ‎значительно ‎выше ‎расчетного.‏ ‎Например,‏ ‎для ‎HARP‏ ‎расчетное ‎давление‏ ‎отличалось ‎от ‎реального ‎на ‎40%.

  • Физика‏ ‎процессов‏ ‎такова, ‎что‏ ‎короткие ‎пушки‏ ‎держат ‎куда ‎большие ‎давления, ‎чем‏ ‎длинные,‏ ‎например,‏ ‎давление ‎в‏ ‎стволе ‎танка‏ ‎при ‎выстреле‏ ‎достигает‏ ‎600 ‎МПа‏ ‎(6118 ‎атм.), ‎но ‎опять-таки ‎такие‏ ‎показатели ‎применимы‏ ‎только‏ ‎для ‎коротких ‎стволов.

Реальное‏ ‎давление ‎150-метровой‏ ‎пушки ‎будет ‎более ‎1000‏ ‎атмосфер,‏ ‎а ‎при‏ ‎скорости ‎6‏ ‎км/с ‎трение ‎в ‎стволе ‎создаст‏ ‎температуру‏ ‎в ‎3600‏ ‎градусов ‎Цельсия,‏ ‎и ‎это ‎расчетная ‎температура, ‎в‏ ‎реальности‏ ‎она‏ ‎будет ‎куда‏ ‎больше.

Более ‎того,‏ ‎при ‎вылете‏ ‎из‏ ‎ствола ‎снаряд‏ ‎начнет ‎испытывать ‎трение ‎об ‎плотные‏ ‎слои ‎атмосферы,‏ ‎которое‏ ‎он ‎будет ‎преодолевать‏ ‎около ‎3-4‏ ‎секунд. ‎Это ‎воздействие ‎разогреет‏ ‎его‏ ‎поверхность ‎до‏ ‎10000 ‎градусов‏ ‎Цельсия, ‎превратив ‎воздух ‎в ‎плазму.

  • Расчетное‏ ‎время‏ ‎жизни ‎снаряда‏ ‎составляет ‎0,1–0,25‏ ‎секунды. ‎При ‎применении ‎абляционного ‎покрытия,‏ ‎которое,‏ ‎испаряясь,‏ ‎уносит ‎90%‏ ‎тепла, ‎снаряд‏ ‎раскалится ‎до‏ ‎3000‏ ‎градусов ‎Цельсия,‏ ‎что ‎тоже ‎не ‎очень ‎хорошо‏ ‎для ‎его‏ ‎электронных‏ ‎компонентов.

Подводя ‎итог, ‎вывести‏ ‎500 ‎кг‏ ‎ракету ‎на ‎орбиту ‎технически‏ ‎возможно,‏ ‎но ‎это‏ ‎будет ‎обгоревшая‏ ‎болванка ‎с ‎выжженной ‎электроникой. ‎Какой‏ ‎процент‏ ‎полезной ‎нагрузки‏ ‎там ‎будет,‏ ‎уже ‎не ‎важно, ‎так ‎как‏ ‎подобные‏ ‎проекты‏ ‎для ‎реализации‏ ‎требуют ‎прорывные‏ ‎технологии ‎(плазменные‏ ‎щиты,‏ ‎сверхстойкие ‎наноматериалы).

Плазменный‏ ‎щит, ‎выдерживающий ‎температуру ‎в ‎5500‏ ‎градусов, ‎был‏ ‎недавно‏ ‎разработан ‎и ‎применяется‏ ‎в ‎гиперзвуковом‏ ‎ракетном ‎комплексе ‎«Авангард». ‎Осталось‏ ‎дело‏ ‎за ‎материалами,‏ ‎которые ‎могли‏ ‎бы ‎на ‎порядок ‎повысить ‎живучесть‏ ‎ствола,‏ ‎хотя ‎бы‏ ‎до ‎100‏ ‎выстрелов.

Но ‎а ‎как ‎насчет ‎пушки‏ ‎21‏ ‎века:‏ ‎не ‎пороховой‏ ‎или ‎газовой,‏ ‎а ‎электромагнитной?‏ ‎Пушка‏ ‎Гаусса ‎и‏ ‎рельсотрон, ‎где ‎снаряд ‎разгоняется ‎магнитными‏ ‎полями ‎в‏ ‎вакуумной‏ ‎системе, ‎теоретически ‎могут‏ ‎решить ‎ряд‏ ‎проблем. ‎Это ‎уже ‎не‏ ‎фантазия,‏ ‎а ‎теоретическая‏ ‎возможность. ‎Эксперименты,‏ ‎такие ‎как ‎Enhanced ‎Hyper ‎Velocity‏ ‎Launcher‏ ‎в ‎лаборатории‏ ‎Сандия, ‎достигли‏ ‎16,09 ‎км/с ‎для ‎микроскопических ‎объектов,‏ ‎то‏ ‎есть‏ ‎3-й ‎космической‏ ‎скорости.



Что, ‎если‏ ‎масштабировать ‎это‏ ‎до‏ ‎тонн? ‎Правда,‏ ‎здесь ‎тоже ‎начинается ‎инженерия ‎на‏ ‎грани ‎магии.‏ ‎Ствол‏ ‎длиной ‎в ‎километры,‏ ‎конденсаторы ‎массой‏ ‎в ‎десятки ‎тысяч ‎тонн,‏ ‎материалы,‏ ‎выдерживающие ‎давление‏ ‎в ‎миллионы‏ ‎атмосфер, ‎— ‎это ‎вызов, ‎сравнимый‏ ‎с‏ ‎созданием ‎термоядерного‏ ‎реактора.

Современные ‎ракеты,‏ ‎в ‎отличие ‎от ‎пушки, ‎разгоняются‏ ‎плавно,‏ ‎с‏ ‎ускорением ‎1,5–3‏ ‎G, ‎что‏ ‎позволяет ‎запускать‏ ‎чувствительные‏ ‎грузы, ‎включая‏ ‎людей.

Пушки ‎на ‎такое ‎неспособны, ‎и‏ ‎снаряды ‎должны‏ ‎выдерживать‏ ‎ускорение ‎в ‎10–30‏ ‎тысяч ‎G,‏ ‎что ‎сужает ‎номенклатуру ‎полезной‏ ‎нагрузки‏ ‎на ‎99,9%.

  • У‏ ‎меня ‎расчетная‏ ‎стоимость ‎вывода ‎1 ‎кг ‎полезной‏ ‎нагрузки‏ ‎на ‎НОО‏ ‎из ‎пушки‏ ‎получилась ‎около ‎10 ‎000 ‎долларов,‏ ‎что‏ ‎в‏ ‎4,5 ‎раза‏ ‎дороже, ‎чем‏ ‎выводят ‎сегодня‏ ‎современные‏ ‎ракетоносители.

Но ‎помимо‏ ‎пушки ‎есть ‎и ‎куда ‎более‏ ‎реалистичные ‎альтернативные‏ ‎методы‏ ‎запуска ‎полезной ‎нагрузки‏ ‎в ‎космос,‏ ‎поговорим ‎о ‎них ‎в‏ ‎следующих‏ ‎материалах.

Слушать: 4+ мин
О
logo
Ооо космосовое...

Подкаст на тему «Тайна чёрных дыр»

Друзья, ‎первый‏ ‎подкаст ‎готов! ‎'Тайна ‎чёрных ‎дыр'‏ ‎— ‎5‏ ‎минут‏ ‎о ‎том, ‎что‏ ‎это ‎за‏ ‎космические ‎монстры, ‎почему ‎они‏ ‎нас‏ ‎пугают ‎и‏ ‎как ‎Земля‏ ‎может ‎стать ‎спагетти. ‎Просто, ‎с‏ ‎фактами‏ ‎и ‎юмором.‏ ‎Доступ ‎бесплатный,‏ ‎но ‎если ‎хотите ‎— ‎поддержите‏ ‎меня‏ ‎подпиской,‏ ‎чтобы ‎узнать,‏ ‎что ‎скрывает‏ ‎космос! ‎Скоро‏ ‎новый‏ ‎выпуск ‎—‏ ‎пишите ‎идеи!

Читать: 11+ мин
logo Норин

Не взлетел. Орбитальный бырбырдировщик Рейха

Доступно подписчикам уровня
«На кофе»
Подписаться за 500₽ в месяц

После Второй мировой войны сначала разведки стран Антигитлеровской коалиции, а потом и широкая публика получили много поводов для удивления. Нацисты, увлеченные концепцией чудо-оружия, создали много экзотических образцов вооружения и техники в металле, и еще больше – в виде проектов, эскизов и смелых концептуальных замыслов.

Читать: 1+ мин
logo Топорные новости

В Землю врежется астероид размером с футбольное поле с вероятностью 3,1%

Это ‎рекордный‏ ‎шанс ‎за ‎всю ‎историю ‎наблюдений.

2024 YR4‏ ‎сейчас ‎считается‏ ‎самым‏ ‎опасным ‎метеоритом ‎и‏ ‎главным ‎кандидатом‏ ‎на ‎потенциальный ‎удар ‎среди‏ ‎известных‏ ‎объектов.

По ‎расчётам‏ ‎учёных, ‎он‏ ‎может ‎врезаться ‎в ‎Землю ‎в‏ ‎2032‏ ‎году, ‎высвободив‏ ‎до ‎7,8‏ ‎мегатонн ‎энергии ‎— ‎это ‎эквивалент‏ ‎520‏ ‎ядерных‏ ‎бомб ‎Хиросимы.‏ ‎Такой ‎удар‏ ‎способен ‎сровнять‏ ‎с‏ ‎землёй ‎целый‏ ‎мегаполис.

Читать: 17+ мин
logo Кочетов Алексей

Может ли сегодня человечество спасти планету от падения астероида?

В ‎последние‏ ‎годы, ‎с ‎развитием ‎технологий, ‎все‏ ‎больше ‎людей‏ ‎начинают‏ ‎понимать, ‎что ‎наша‏ ‎планета, ‎не‏ ‎защищена ‎от ‎случайных ‎столкновений.

Каждый‏ ‎год‏ ‎астрономы ‎обнаруживают‏ ‎десятки ‎новых‏ ‎объектов, ‎приближающихся ‎к ‎Земле. ‎По‏ ‎оценкам,‏ ‎в ‎космосе‏ ‎существует ‎более‏ ‎40 ‎000 ‎потенциально ‎опасных ‎объектов.

Согласно‏ ‎данным‏ ‎NASA,‏ ‎в ‎категорию‏ ‎потенциально ‎опасных‏ ‎входят ‎астероиды,‏ ‎которые‏ ‎могут ‎приблизиться‏ ‎к ‎Земле ‎на ‎расстояние, ‎превышающее‏ ‎7,5 ‎миллионов‏ ‎километров.‏ ‎Это ‎в ‎20‏ ‎раз ‎больше‏ ‎расстояния ‎от ‎Земли ‎до‏ ‎Луны.‏ ‎Однако ‎именно‏ ‎такие ‎объекты,‏ ‎как ‎астероид ‎101955 ‎Bennu, ‎который‏ ‎по‏ ‎размеру ‎сопоставим‏ ‎с ‎горой,‏ ‎рано ‎или ‎поздно ‎столкнется ‎с‏ ‎Землей.

Потому‏ ‎астероиды,‏ ‎которые ‎могут‏ ‎не ‎привлекать‏ ‎нашего ‎внимания,‏ ‎могут‏ ‎стать ‎метеоритами,‏ ‎способными ‎пошатнуть ‎нашу ‎цивилизацию.


Как ‎считает‏ ‎Леонид ‎Еленин,‏ ‎научный‏ ‎сотрудник ‎Института ‎прикладной‏ ‎математики ‎имени‏ ‎М. ‎В. ‎Келдыша ‎РАН,‏ ‎падение‏ ‎челябинского ‎метеорита‏ ‎отрезвило ‎ученых‏ ‎в ‎понимании ‎угроз ‎от ‎небольших‏ ‎небесных‏ ‎тел, ‎заставив‏ ‎взглянуть ‎на‏ ‎эту ‎проблему ‎с ‎более ‎пессимистичной‏ ‎точки‏ ‎зрения.

В‏ ‎2013 ‎году‏ ‎челябинский ‎метеорит,‏ ‎всего ‎20‏ ‎метров‏ ‎в ‎диаметре,‏ ‎взорвался ‎над ‎городом ‎с ‎энергией‏ ‎30 ‎Хиросим.‏ ‎Челябинск‏ ‎от ‎тотального ‎разрушения‏ ‎спасло ‎только‏ ‎то, ‎что ‎взрыв ‎произошел‏ ‎на‏ ‎высоте ‎23‏ ‎км, ‎что‏ ‎позволило ‎атмосфере ‎поглотить ‎более ‎95%‏ ‎энергии‏ ‎ударной ‎волны.


Задумайтесь:‏ ‎каждый ‎день,‏ ‎в ‎тот ‎момент, ‎когда ‎мы‏ ‎укладываемся‏ ‎спать,‏ ‎астероид ‎может‏ ‎быть ‎уже‏ ‎на ‎пути‏ ‎к‏ ‎Земле, ‎а‏ ‎мы ‎об ‎этом ‎даже ‎не‏ ‎знаем. ‎Технологии,‏ ‎которые‏ ‎мы ‎разрабатываем ‎для‏ ‎обнаружения ‎этих‏ ‎объектов, ‎могут ‎быть ‎недостаточно‏ ‎совершенными.‏ ‎Вот ‎и‏ ‎вопрос: ‎можно‏ ‎ли ‎изменить ‎траекторию ‎объекта, ‎который‏ ‎несет‏ ‎с ‎собой‏ ‎угрозу ‎уничтожения‏ ‎городов ‎и ‎даже ‎всей ‎жизни‏ ‎на‏ ‎планете?

Недавно‏ ‎Китай ‎начал‏ ‎формировать ‎команду‏ ‎специалистов ‎для‏ ‎противостояния‏ ‎угрозам, ‎исходящим‏ ‎от ‎астероидов ‎и ‎других ‎небесных‏ ‎тел, ‎в‏ ‎рамках‏ ‎Государственного ‎управления ‎оборонной‏ ‎науки, ‎техники‏ ‎и ‎промышленности ‎КНР.

  • Появились ‎даже‏ ‎вакансии‏ ‎в ‎группе‏ ‎по ‎«планетарной‏ ‎обороне».

Основной ‎задачей ‎этой ‎группы ‎является‏ ‎изучение‏ ‎и ‎мониторинг‏ ‎астероидов, ‎а‏ ‎также ‎разработка ‎методов ‎раннего ‎оповещения‏ ‎о‏ ‎возможных‏ ‎астероидных ‎угрозах.

  • 2024 YR4‏ ‎— ‎околоземный‏ ‎астероид ‎диаметром‏ ‎около‏ ‎90 ‎метров,‏ ‎имеет ‎2% ‎шанс ‎столкновения ‎с‏ ‎Землёй ‎в‏ ‎2032‏ ‎году:



Какие ‎есть ‎решения?

Что,‏ ‎если ‎мы‏ ‎можем ‎сбить ‎астероид ‎с‏ ‎курса‏ ‎с ‎помощью‏ ‎кинетического ‎удара?‏ ‎Миссия ‎NASA ‎DART, ‎проведенная ‎в‏ ‎2022‏ ‎году, ‎доказала,‏ ‎что ‎это‏ ‎возможно. ‎Мы ‎можем ‎отправить ‎космический‏ ‎аппарат,‏ ‎который‏ ‎на ‎полном‏ ‎ходу ‎врежется‏ ‎в ‎астероид‏ ‎и,‏ ‎благодаря ‎своей‏ ‎скорости, ‎изменит ‎его ‎траекторию.


Однако ‎это‏ ‎не ‎так‏ ‎просто.‏ ‎Каждый ‎новый ‎эксперимент‏ ‎требует ‎всё‏ ‎более ‎тщательной ‎проработки, ‎чтобы‏ ‎не‏ ‎привести ‎к‏ ‎непредсказуемым ‎последствиям.‏ ‎Не ‎факт, ‎что ‎астероид ‎будет‏ ‎повержен‏ ‎этим ‎ударом.‏ ‎А ‎может,‏ ‎он ‎рассыплется, ‎и ‎его ‎фрагменты,‏ ‎обрушившись‏ ‎на‏ ‎Землю, ‎приведут‏ ‎к ‎катастрофе‏ ‎еще ‎большего‏ ‎масштаба?

Да‏ ‎и ‎такой‏ ‎вариант ‎подходит ‎только ‎для ‎маленьких‏ ‎астероидов, ‎обнаруженных‏ ‎за‏ ‎десятилетия ‎до ‎потенциального‏ ‎столкновения. ‎Глобально‏ ‎угрозы ‎жизни ‎человечеству ‎подобные‏ ‎объекты‏ ‎не ‎представляют.

Другой‏ ‎вариант ‎—‏ ‎применить ‎лазерное ‎оружие, ‎а ‎именно‏ ‎мощные‏ ‎лазерные ‎лучи,‏ ‎которые ‎должны‏ ‎воздействовать ‎на ‎астероиды, ‎чтобы ‎изменить‏ ‎их‏ ‎курс,‏ ‎или ‎использование‏ ‎ядерных ‎зарядов‏ ‎для ‎разрушения‏ ‎их‏ ‎целостности ‎и‏ ‎смены ‎траектории ‎полета ‎— ‎это‏ ‎лишь ‎несколько‏ ‎из‏ ‎возможных ‎решений, ‎которые‏ ‎предлагают ‎современные‏ ‎учёные.

И ‎вот ‎вопрос: ‎а‏ ‎способно‏ ‎ли ‎человечество‏ ‎на ‎нынешнем‏ ‎этапе ‎развития ‎защитить ‎Землю ‎от‏ ‎потенциальной‏ ‎угрозы ‎столкновения‏ ‎с ‎крупным‏ ‎астероидом?

Мы, ‎люди, ‎привыкли ‎верить ‎в‏ ‎прогресс‏ ‎и‏ ‎в ‎то,‏ ‎что ‎наука‏ ‎и ‎технологии‏ ‎способны‏ ‎решить ‎подобные‏ ‎проблемы. ‎Однако ‎в ‎случае ‎с‏ ‎пришельцами ‎из‏ ‎космоса‏ ‎это ‎может ‎означать,‏ ‎что ‎мы‏ ‎находимся ‎в ‎плену ‎иллюзий.

Но‏ ‎нам‏ ‎все ‎равно‏ ‎придется ‎решать‏ ‎эти ‎проблемы, ‎и ‎то, ‎что‏ ‎ранее‏ ‎казалось ‎невообразимым‏ ‎— ‎изменение‏ ‎орбиты ‎объектов, ‎летящих ‎миллиарды ‎лет‏ ‎по‏ ‎небесным‏ ‎траекториям, ‎—‏ ‎в ‎какой-то‏ ‎момент ‎становится‏ ‎нашей‏ ‎реальностью. ‎Как‏ ‎же ‎быть?

Когда ‎мы ‎говорим ‎о‏ ‎защите ‎Земли‏ ‎(в‏ ‎будущем ‎и ‎других‏ ‎планет, ‎космических‏ ‎станций) ‎от ‎астероидов, ‎важно‏ ‎понимать,‏ ‎какими ‎средствами‏ ‎мы ‎располагаем‏ ‎для ‎оценки ‎потенциальных ‎угроз ‎для‏ ‎человечества‏ ‎в ‎случае‏ ‎падения ‎крупного‏ ‎астероида.


Средства ‎астрономического ‎наблюдения ‎уже ‎достаточно‏ ‎хорошо‏ ‎развиты,‏ ‎чтобы ‎гарантированно‏ ‎обнаруживать ‎потенциально‏ ‎опасные ‎астероиды‏ ‎диаметром‏ ‎более ‎1‏ ‎км ‎минимум ‎за ‎3 ‎года‏ ‎до ‎их‏ ‎гипотетического‏ ‎столкновения.

Гарантированное ‎обнаружение ‎то‏ ‎и ‎означает,‏ ‎что ‎в ‎случае ‎100%‏ ‎столкновения‏ ‎астероида ‎диаметром‏ ‎около ‎1‏ ‎км ‎с ‎Землёй ‎мы ‎узнаем‏ ‎об‏ ‎этом ‎минимум‏ ‎за ‎3‏ ‎года.

Проведя ‎расчеты ‎по ‎различным ‎методам‏ ‎противоастероидной‏ ‎борьбы,‏ ‎я ‎пришел‏ ‎к ‎выводу,‏ ‎что ‎наиболее‏ ‎эффективным‏ ‎средством ‎изменения‏ ‎орбиты ‎астероида ‎будет ‎банальная ‎бомбардировка‏ ‎его ‎ядерными‏ ‎снарядами.

Однако‏ ‎разберем ‎и ‎альтернативные‏ ‎методы, ‎предложенные‏ ‎научным ‎сообществом.

Итак… ‎Представим ‎следующую‏ ‎ситуацию:‏ ‎астрономы ‎обнаружили‏ ‎крупный ‎каменный‏ ‎астероид ‎диаметром ‎в ‎1 ‎км,‏ ‎который‏ ‎гарантированно ‎врежется‏ ‎в ‎землю‏ ‎на ‎всей ‎своей ‎скорости.


Деваться ‎некуда,‏ ‎предотвратить‏ ‎столкновение‏ ‎можно ‎только‏ ‎отклонением ‎орбиты‏ ‎астероида ‎минимум‏ ‎на‏ ‎половину ‎диаметра‏ ‎Земли.

Итак, ‎чтобы ‎отклонить ‎астероид ‎размером‏ ‎около ‎1‏ ‎км‏ ‎в ‎диаметре ‎и‏ ‎массой ‎порядка‏ ‎1,3×10¹⁵ ‎кг ‎за ‎3‏ ‎года,‏ ‎необходимо ‎изменить‏ ‎его ‎скорость‏ ‎всего ‎на ‎6,7 ‎см/с. ‎Этого‏ ‎будет‏ ‎достаточно, ‎чтобы‏ ‎увести ‎его‏ ‎от ‎орбиты ‎Земли, ‎но ‎за‏ ‎семью‏ ‎сантиметрами‏ ‎в ‎секунду‏ ‎скрывается ‎огромная‏ ‎величина ‎суммарного‏ ‎импульса,‏ ‎которого ‎нужно‏ ‎сообщить ‎этому ‎астероиду.

  • Исходя ‎из ‎его‏ ‎массы, ‎импульс‏ ‎должен‏ ‎быть ‎не ‎менее‏ ‎8,75×10¹³ ‎кг·м/с.

Для‏ ‎этого ‎потребуется ‎бомбардировка ‎15-тью‏ ‎ядерными‏ ‎зарядами ‎мощностью‏ ‎50 ‎мегатонн‏ ‎по ‎курсу ‎следования ‎астероида.

Запустить ‎ракету‏ ‎с‏ ‎ядерной ‎боеголовкой,‏ ‎как ‎у‏ ‎«Царь-бомбы», ‎за ‎десятки ‎миллионов ‎километров‏ ‎к‏ ‎астероиду,‏ ‎чтобы ‎она‏ ‎там ‎сдетонировала,‏ ‎— ‎самое‏ ‎простое‏ ‎из ‎возможных‏ ‎вариантов ‎решения ‎проблемы.


Можно ‎ли ‎обойтись‏ ‎альтернативами? ‎Например,‏ ‎использовать‏ ‎гравитационный ‎тягач, ‎когда‏ ‎космический ‎аппарат‏ ‎зависает ‎рядом ‎с ‎астероидом,‏ ‎создавая‏ ‎гравитационное ‎притяжение‏ ‎для ‎медленного‏ ‎изменения ‎его ‎траектории.

Можно, ‎но ‎бессмысленно.‏ ‎Оперативно‏ ‎мы ‎можем‏ ‎послать ‎туда‏ ‎10-тонный ‎аппарат, ‎который ‎зависнет ‎в‏ ‎100‏ ‎метрах‏ ‎над ‎астероидом‏ ‎и ‎своим‏ ‎гравитационным ‎полем‏ ‎будет‏ ‎постепенно ‎менять‏ ‎его ‎траекторию.

  • Для ‎гарантированного ‎отклонения ‎траектории,‏ ‎чтобы ‎астероид‏ ‎пролетел‏ ‎мимо ‎Земли, ‎понадобится‏ ‎3,2 ‎млрд‏ ‎лет.

Допустим, ‎человечество ‎мобилизовало ‎все‏ ‎свои‏ ‎ресурсы ‎и‏ ‎за ‎год‏ ‎смогло ‎построить ‎на ‎орбите ‎100‏ ‎000-тонный‏ ‎космический ‎корабль‏ ‎— ‎гравитационный‏ ‎тягач. ‎В ‎этом ‎случае ‎отклонить‏ ‎астероид‏ ‎удастся‏ ‎«всего» ‎за‏ ‎317 ‎тысяч‏ ‎лет.

Кинетический ‎удар‏ ‎типа‏ ‎DART ‎—‏ ‎очень ‎обсуждаемая ‎тема, ‎тем ‎более‏ ‎единственная, ‎реализованная‏ ‎на‏ ‎практике. ‎Но ‎для‏ ‎отклонения ‎орбиты‏ ‎такого ‎крупного ‎астероида ‎нужно‏ ‎1450‏ ‎мегазондов ‎массой‏ ‎10 ‎000‏ ‎тонн ‎каждый.

  • Только ‎для ‎постройки ‎одного‏ ‎мегазонда‏ ‎потребуется ‎70–100‏ ‎запусков ‎сверхтяжелых‏ ‎ракет, ‎для ‎всех ‎— ‎145‏ ‎000‏ ‎запусков.


Падение‏ ‎рассматриваемого ‎астероида‏ ‎выделит ‎энергию‏ ‎в ‎62000‏ ‎мегатонн,‏ ‎что ‎в‏ ‎1000 ‎раз ‎мощнее ‎всего ‎ядерного‏ ‎арсенала ‎Земли,‏ ‎и‏ ‎оставит ‎кратер ‎диаметром‏ ‎около ‎15‏ ‎км, ‎глубиной ‎в ‎500‏ ‎м.

  • Это‏ ‎спровоцирует ‎землетрясения‏ ‎магнитудой ‎9+‏ ‎баллов ‎и ‎пожары ‎в ‎радиусе‏ ‎500‏ ‎км, ‎а‏ ‎также ‎цунами‏ ‎высотой ‎до ‎100 ‎метров, ‎если‏ ‎падение‏ ‎придется‏ ‎в ‎океан.

Глобальные‏ ‎эффекты ‎будут‏ ‎сравнимы ‎с‏ ‎локальной‏ ‎«ядерной ‎зимой»:‏ ‎выброс ‎пыли ‎и ‎сажи ‎вызовет‏ ‎«астероидную ‎зиму»‏ ‎на‏ ‎1–3 ‎года.

Урожайность ‎упадет‏ ‎на ‎50%,‏ ‎случится ‎коллапс ‎наиболее ‎пострадавших‏ ‎регионов,‏ ‎массовая ‎миграция,‏ ‎но ‎человечеству‏ ‎как ‎виду ‎ничего ‎не ‎будет‏ ‎угрожать.

И‏ ‎вообще, ‎если‏ ‎реально ‎встанет‏ ‎вопрос ‎таким ‎образом, ‎то ‎3‏ ‎года‏ ‎активной‏ ‎подготовки ‎к‏ ‎подобной ‎катастрофе‏ ‎в ‎конечном‏ ‎итоге‏ ‎сохранит ‎больше‏ ‎жизней ‎и ‎ресурсов ‎планеты, ‎чем‏ ‎строительство ‎полутора‏ ‎тысяч‏ ‎10 ‎000-тонных ‎зондов‏ ‎при ‎современных‏ ‎технологиях.

Другой ‎обсуждаемый ‎вариант ‎—‏ ‎это‏ ‎лазерная ‎абляция,‏ ‎когда ‎лазеры‏ ‎испаряют ‎породу ‎с ‎поверхности ‎астероида,‏ ‎создавая‏ ‎реактивную ‎тягу.

Исходя‏ ‎из ‎удельной‏ ‎энергии ‎сублимации ‎распространенного ‎астероидного ‎вещества,‏ ‎потребуется‏ ‎воздействовать‏ ‎лазерными ‎лучами‏ ‎суммарной ‎мощностью‏ ‎3 ‎ГВт‏ ‎в‏ ‎течение ‎всех‏ ‎3-х ‎лет.


  • При ‎этом ‎3 ‎ГВт‏ ‎— ‎это‏ ‎мощность,‏ ‎которая ‎должна ‎достигать‏ ‎поверхности ‎астероида,‏ ‎а ‎на ‎Земле ‎лазерный‏ ‎источник‏ ‎должен ‎быть‏ ‎минимум ‎в‏ ‎100 ‎раз ‎мощнее ‎— ‎300‏ ‎ГВт.‏ ‎При ‎КПД‏ ‎современных ‎боевых‏ ‎лазерных ‎систем ‎(20%) ‎на ‎питание‏ ‎подобного‏ ‎лазера‏ ‎потребуется ‎строительство‏ ‎300 ‎ядерных‏ ‎реакторов, ‎притом‏ ‎что‏ ‎во ‎всем‏ ‎мире ‎насчитывается ‎440 ‎действующих ‎ядерных‏ ‎реакторов.

Как ‎насчет‏ ‎использования‏ ‎солнечного ‎паруса? ‎Давление‏ ‎солнечного ‎света‏ ‎передаёт ‎импульс ‎астероиду ‎через‏ ‎закреплённый‏ ‎отражатель, ‎и‏ ‎тот ‎постепенно‏ ‎отклоняется ‎с ‎траектории.


Но ‎из-за ‎массы‏ ‎астероида‏ ‎даже ‎при‏ ‎парусе ‎площадью‏ ‎1 ‎км² ‎потребуются ‎325 ‎тысяч‏ ‎лет‏ ‎для‏ ‎его ‎гарантированного‏ ‎отклонения.

  • На ‎сегодня‏ ‎площадь ‎самого‏ ‎большого‏ ‎солнечного ‎паруса‏ ‎составляет ‎чуть ‎более ‎1200 ‎квадратных‏ ‎метров ‎(0,0012‏ ‎км²),‏ ‎и ‎то ‎в‏ ‎космос ‎он‏ ‎так ‎и ‎не ‎полетел.

Итак,‏ ‎на‏ ‎нынешнем ‎уровне‏ ‎развития ‎оперативно‏ ‎отклонить ‎астероид ‎диаметром ‎в ‎1‏ ‎км‏ ‎возможно ‎только‏ ‎посредством ‎ядерной‏ ‎бомбардировки.

Что ‎насчет ‎более ‎крупных ‎тел,‏ ‎например‏ ‎комет?

Если‏ ‎рассматривать ‎комету‏ ‎Галлея ‎и‏ ‎подобные ‎ей,‏ ‎ядро‏ ‎которой ‎около‏ ‎15 ‎км ‎в ‎длину, ‎масса‏ ‎около ‎2,2×10¹⁴‏ ‎кг,‏ ‎и ‎скорость ‎относительно‏ ‎Земли ‎70‏ ‎км/с, ‎расчёт ‎показывает, ‎что‏ ‎понадобится‏ ‎всего ‎5‏ ‎ядерных ‎ударов‏ ‎50-мегатонными ‎зарядами ‎для ‎гарантированного ‎отклонения,‏ ‎так‏ ‎как ‎её‏ ‎масса ‎в‏ ‎6 ‎раз ‎меньше, ‎чем ‎у‏ ‎астероида‏ ‎из‏ ‎вышеописанного ‎примера.‏ ‎Всё ‎потому,‏ ‎что ‎она‏ ‎состоит‏ ‎преимущественно ‎из‏ ‎льда, ‎замерзшего ‎метана, ‎аммиака ‎и‏ ‎углекислого ‎газа,‏ ‎которые,‏ ‎вторично ‎испаряясь, ‎создают‏ ‎дополнительную ‎реактивную‏ ‎тягу ‎уводя ‎комету ‎с‏ ‎курса.

Ну‏ ‎а ‎как‏ ‎насчет ‎отклонения‏ ‎кометы ‎Бернардинелли-Бернштейна ‎— ‎крупнейшей ‎известной‏ ‎кометы‏ ‎Солнечной ‎системы?

Диаметр‏ ‎её ‎ядра‏ ‎около ‎150 ‎км, ‎масса ‎в‏ ‎50‏ ‎раз‏ ‎больше, ‎чем‏ ‎у ‎каменного‏ ‎астероида ‎из‏ ‎примера.‏ ‎Комета ‎преимущественно‏ ‎состоит ‎из ‎льда, ‎пыли, ‎каменистых‏ ‎пород. ‎У‏ ‎кометы‏ ‎рыхлая ‎структура, ‎что‏ ‎повышает ‎эффективность‏ ‎передачи ‎импульса ‎при ‎взрыве.

Однако‏ ‎расчеты‏ ‎показывают, ‎что‏ ‎потребуется ‎до‏ ‎64 ‎000 ‎ядерных ‎устройств ‎(50‏ ‎Мт)‏ ‎для ‎гарантированного‏ ‎её ‎отклонения‏ ‎за ‎3 ‎года. ‎Это ‎в‏ ‎2000‏ ‎раз‏ ‎больше ‎всего‏ ‎мирового ‎ядерного‏ ‎арсенала.

В ‎этом‏ ‎случае‏ ‎человечеству ‎можно‏ ‎только ‎посочувствовать… ‎Но ‎для ‎других‏ ‎цивилизаций ‎это‏ ‎будет‏ ‎уроком, ‎ибо ‎прежде‏ ‎чем ‎формировать‏ ‎военный ‎бюджет, ‎который ‎в‏ ‎сотни‏ ‎раз ‎превосходит‏ ‎затраты ‎на‏ ‎науку, ‎нужно ‎для ‎начала ‎гарантировать‏ ‎безопасность‏ ‎собственного ‎вида‏ ‎и ‎планеты,‏ ‎а ‎не ‎играть ‎в ‎войнушку.‏ ‎Тогда‏ ‎был‏ ‎бы ‎шанс‏ ‎избежать ‎подобной‏ ‎участи:


Энергия ‎удара‏ ‎составит‏ ‎95000000000 ‎мегатонн,‏ ‎образовав ‎кратер ‎диаметром ‎5000 ‎км.‏ ‎Удар ‎испарит‏ ‎океаны,‏ ‎кислород ‎вступит ‎в‏ ‎реакцию ‎с‏ ‎расплавленными ‎породами, ‎создав ‎ядовитые‏ ‎газы,‏ ‎равновесная ‎температура‏ ‎на ‎планете‏ ‎установится ‎в ‎400-500°C, ‎превратив ‎Землю‏ ‎на‏ ‎сотни ‎миллионов‏ ‎лет ‎в‏ ‎подобие ‎Венеры.

Чисто ‎практически ‎при ‎современных‏ ‎технологиях‏ ‎человечество‏ ‎может ‎отклонить‏ ‎астероид ‎диаметром‏ ‎до ‎10‏ ‎км‏ ‎при ‎мобилизации‏ ‎всех ‎ресурсов. ‎Для ‎этого ‎понадобится‏ ‎бомбардировка ‎150–200‏ ‎термоядерными‏ ‎зарядами ‎по ‎50‏ ‎мегатонн ‎каждый.

А‏ ‎это ‎уже ‎существенно, ‎ведь‏ ‎астероид‏ ‎диаметром ‎10‏ ‎км ‎65‏ ‎миллионов ‎лет ‎назад ‎уничтожил ‎динозавров,‏ ‎образовав‏ ‎кратер ‎Чиксулуб:


Удар‏ ‎такого ‎астероида‏ ‎выделит ‎энергию, ‎равную ‎той, ‎что‏ ‎выделяется‏ ‎за‏ ‎1 ‎секунду‏ ‎Солнцем ‎—‏ ‎100 ‎000‏ ‎000‏ ‎мегатонн.

Температура ‎в‏ ‎эпицентре ‎удара ‎поднимется ‎до ‎20‏ ‎000°C, ‎а‏ ‎ударная‏ ‎волна ‎уничтожит ‎всё‏ ‎в ‎радиусе‏ ‎1000 ‎км, ‎образовав ‎кратер‏ ‎в‏ ‎150-180 ‎км‏ ‎в ‎диаметре.

Пыль‏ ‎и ‎сажа ‎заблокируют ‎90% ‎солнечного‏ ‎света‏ ‎на ‎10‏ ‎лет. ‎Температура‏ ‎упадет ‎на ‎20°C, ‎спровоцировав ‎вымирание‏ ‎75%‏ ‎всей‏ ‎биомассы ‎планеты.‏ ‎Сельское ‎хозяйство‏ ‎в ‎таких‏ ‎условиях‏ ‎будет ‎невозможно,‏ ‎а ‎наибольшим ‎шансом ‎выживания ‎будут‏ ‎обладать ‎изолированные‏ ‎группы‏ ‎людей ‎в ‎бункерах.

  • Наибольшую‏ ‎вероятность ‎выживания‏ ‎будут ‎иметь ‎крысы, ‎скорпионы‏ ‎и‏ ‎тихоходки. ‎Через‏ ‎10 ‎млн‏ ‎лет ‎биоразнообразие ‎вернется, ‎но ‎без‏ ‎крупных‏ ‎млекопитающих.

Глобальные ‎последствия‏ ‎продлятся ‎до‏ ‎100 ‎000 ‎лет, ‎так ‎как‏ ‎из-за‏ ‎падения‏ ‎средней ‎температуры‏ ‎на ‎Земле‏ ‎ниже ‎нуля‏ ‎наступит‏ ‎ледниковый ‎период.

Технологии‏ ‎человечества, ‎несмотря ‎на ‎сохранившиеся ‎знания,‏ ‎деградируют ‎до‏ ‎уровня‏ ‎19 ‎века, ‎но‏ ‎шансы ‎на‏ ‎возрождение ‎человеческой ‎цивилизации ‎будут‏ ‎сравнительно‏ ‎высокими, ‎экватор‏ ‎станет ‎единственным‏ ‎местом ‎с ‎приемлемыми ‎температурами, ‎где‏ ‎возможно‏ ‎будет ‎заниматься‏ ‎сельским ‎хозяйством.

  • Вот‏ ‎подобную ‎угрозу ‎из ‎космоса, ‎человечество‏ ‎может‏ ‎попытаться‏ ‎устранить.
Чисто ‎теоретически‏ ‎всего ‎накопленного‏ ‎ядерного ‎арсенала‏ ‎на‏ ‎Земле ‎хватит‏ ‎отклонить ‎астероид ‎диаметром ‎в ‎25‏ ‎км.

А ‎что‏ ‎будет,‏ ‎если ‎на ‎Землю‏ ‎упадет ‎комета‏ ‎типа ‎кометы ‎Галлея? ‎А‏ ‎будет‏ ‎совершенно ‎не‏ ‎то, ‎что‏ ‎показывают ‎в ‎фантастических ‎фильмах, ‎будет‏ ‎нечто‏ ‎иное…

Об ‎этом‏ ‎в ‎другом‏ ‎материале.

Современные ‎системы ‎обеспечивают ‎высокий ‎уровень‏ ‎защиты.‏ ‎Будущие‏ ‎технологии ‎и‏ ‎методы, ‎которыми‏ ‎займется ‎команда‏ ‎по‏ ‎«планетарной ‎обороне»,‏ ‎сократят ‎время ‎обнаружения ‎до ‎1–2‏ ‎лет ‎даже‏ ‎небольших‏ ‎объектов ‎(100–150 ‎метров).

  • Существующие‏ ‎методы ‎обнаружат‏ ‎за ‎5–10 ‎лет ‎потенциально‏ ‎опасный‏ ‎астероид ‎на‏ ‎околоземной ‎орбите‏ ‎диаметром ‎в ‎1 ‎км.
  • 10-км ‎астероид‏ ‎обнаружится‏ ‎за ‎20–50‏ ‎лет ‎до‏ ‎столкновения ‎в ‎нашей ‎Солнечной ‎системе.
  • 100-км‏ ‎астероид,‏ ‎если‏ ‎он ‎будет‏ ‎представлять ‎опасность,‏ ‎обнаружится ‎минимум‏ ‎за‏ ‎150 ‎лет‏ ‎до ‎столкновения.


Показать еще

Обновления проекта

Статистика

17 подписчиков

Метки

Санкт-Петербург 39 Москва 38 поезд 16 B738 15 Аэрофлот 14 S7 12 иран 11 ЮАР 11 A320neo 10 ак Россия 10 A319 9 SSJ100 9 казахстан 9 Ми-8 9 оаэ 9 турция 9 ATR 72 8 Йоханнесбург 8 Стамбул 8 A320 7 A321 7 B773 7 Utair 7 Новосибирск 7 Тегеран 7 Як-42 7 Якутск 7 MD83 6 Иркутск 6 КНДР 6 Манила 6 Пхеньян 6 теплоход 6 Филиппины 6 A330 5 Etihad 5 Абу-Даби 5 Алматы 5 Ан-24 5 Архангельск 5 Астана 5 Бишкек 5 Благовещенск 5 Бухарест 5 Владивосток 5 Внуково 5 Вологодское авиапредприятие 5 Казань 5 космос 5 Ленск 5 Нарьян-Мар 5 Омск 5 Томск 5 ЮЖНАЯ КОРЕЯ 5 Як-40 5 A321neo 4 A350 4 Air Koryo 4 B789 4 smartavia 4 Дубай 4 Зимбабве 4 ираэро 4 киргизия 4 китай 4 Красавиа 4 Красноярск 4 Мурманск 4 Петропавловск-Камчатский 4 Полярные авиалинии 4 Румыния 4 сеул 4 Ту-134 4 Тюмень 4 Air Astana 3 Airlink 3 B735 3 B737 3 CRJ200 3 E175 3 NordStar 3 Red Wings 3 SCAT 3 TezJet 3 Амдерма 3 Ан-2 3 Белавиа 3 Березово 3 Болгария 3 Брест 3 Виктория-Фолс 3 Воркута 3 Гомель 3 Гонконг 3 Красноселькуп 3 Маган 3 Мешхед 3 мирный 3 Новый Уренгой 3 Ош 3 Самара 3 Сангар 3 Советский 3 София 3 Сыктывкар 3 Шанхай 3 Южно-Сахалинск 3 A300 2 A318 2 A321nx 2 A380 2 Air Algerie 2 B763 2 China Eastern 2 DHC-8 2 E170 2 JS41 2 Mahan Air 2 Nordwind Airlines 2 Pegasus 2 Philippine Airlines 2 Ryanair 2 Singapore Airlines 2 Tarom 2 Turkish Airlines 2 Turkmenistan Airlines 2 Авиашельф 2 Актау 2 Актобе 2 Алжир 2 Алроса 2 Анкара 2 армения 2 Атырау 2 Ашхабад 2 Аэропром 2 белоруссия 2 Бендер-Аббас 2 Блумфонтейн 2 Булавайо 2 Ван 2 Витим 2 Владвосток 2 Вологда 2 Гавана 2 Газпромавиа 2 Давао 2 Дурбан 2 Екатеринбург 2 Ереван 2 Зея 2 Кейптаун 2 Киш 2 Клавдия Еланская 2 Куала-Лумпур 2 куба 2 Лабытнанги 2 Ларьяк 2 малайзия 2 Минеральные Воды 2 Нарьян-Марский ОАО 2 Новокузнецк 2 Норильск 2 Оран 2 Пекин 2 Пусан 2 Решт 2 Ричардс-Бэй 2 Салехард 2 Северо-Курильск 2 сингапур 2 Тимишоара 2 Тобольск 2 Трабзон 2 Турменистан 2 Улан-Удэ 2 Усть-Каменогорск 2 Усть-Куть 2 Уфа 2 Чаваньга 2 Чеджу 2 Чита 2 Шираз 2 ЮВТ Аэро 2 ямал 2 2GO Masinag 1 A310 1 A321lr 1 A330neo 1 Air Zimbabwe 1 AirAsia 1 AnadoluJet 1 Armenian Airlines 1 Asiana Airlines 1 ATA Airlines 1 B190 1 B732 1 B733 1 B736 1 B744 1 B787 1 B78X 1 Be 1 Bell 206 1 Buzz 1 C919 1 Cebu Pacific 1 CemAir 1 China Southern Airlines 1 DHC-6 1 E140 1 E145 1 E190 1 E190E2 1 Emirates 1 Ethiopian Airlines 1 Fadak 1 Fastjet Zimbabwe 1 Federal Air 1 FlyArystan 1 FlySafair 1 HiSky 1 Iran Air 1 Iran AirTour 1 Iran Aseman Airlines 1 Jeju Air 1 Kish Air 1 Korean Air 1 KTX 1 L-410 1 Malta Air 1 MD82 1 PC-6 1 Qazaq Air 1 Qeshm Airlines 1 RJ100 1 RJ85 1 Sepehran Airlines 1 South African Airways 1 Superjet 100 1 Аврора 1 Аддис-Абеба 1 азимут 1 Амурская авиабаза 1 Ан-26 1 Ан-3 1 Аргентина 1 Аэрокузбасс 1 Аэросервис 1 Бургас 1 Буэнос-Айрес 1 великий новгород 1 Великий Устюг 1 Взвад 1 Восход 1 Гипанис 1 Дудинка 1 Заря-304 1 Иваново 1 Ижавиа 1 Икар 1 Ил-62 1 Ил-96 1 Кайо-Коко 1 Караганда 1 Кедровый 1 Керман 1 Котлас 1 Маглев 1 Махачкала 1 метеор 1 Нижневартовск 1 Нижневартовскавиа 1 Ночной экспресс 1 Островной 1 Охтеурская переправа 1 Политрук Бочаров 1 РусЛайн 1 Сковородино 1 Смирных 1 Стрежевой 1 Сургут 1 Тагбиларан 1 тайга 1 Талакан 1 Таштагол 1 Ту-204 1 Ту-214 1 Тында 1 Уральские авиалинии 1 Усть-Ишим 1 Усть-Кара 1 Ханты-Мансийск 1 Хужир 1 экспресс 1 Эфиопия 1 Южное Небо 1 Больше тегов

Фильтры

Подарить подписку

Будет создан код, который позволит адресату получить бесплатный для него доступ на определённый уровень подписки.

Оплата за этого пользователя будет списываться с вашей карты вплоть до отмены подписки. Код может быть показан на экране или отправлен по почте вместе с инструкцией.

Будет создан код, который позволит адресату получить сумму на баланс.

Разово будет списана указанная сумма и зачислена на баланс пользователя, воспользовавшегося данным промокодом.

Добавить карту
0/2048