Практическое использование реактивной энергии

Вот цитата из учебника «Электротехника с основами электроники» авторов Зороховича и Калинина для техникумов. В параграфе «Активная и реактивная мощности» читаем на стр. 121:

«…только активная мощность может обеспечить в приёмнике преобразование электрической энергии в другие виды энергии».

«…Реактивная мощность никакой полезной работы не создаёт, так как её среднее значение в течение одного периода равно нулю…».

В электрической сети совершаются гармонические и синфазные (!) колебания тока и напряжения с частотой 50 Гц. При этом ток и напряжение совпадают по фазе. В этом может убедиться каждый желающий, подключив через шунт 0,5 Ом к сети активную нагрузку (например, лампу накаливания) и подключив к ним осциллограф (соблюдая технику безопасности). Для этой цели лучше использовать сетевой разделительный трансформатор 220 на 220 В. Вначале нужно найти и пометить в розетке фазный и нулевой провод. Как на активной нагрузке будут выглядеть вместе колебания тока и напряжения, показано на Рис. 1

Но если ко вторичной обмотке трансформатора подключить реактивную нагрузку в виде конденсатора, то колебания тока и напряжения будут сдвинуты относительно друг друга по фазе на 90º. Всё это можно проверить тем же способом, что и с активной нагрузкой, подключив осциллограф к шунту и к конденсатору. Осциллограммы тока и напряжения для этого случая приведены ниже

Подключение в качестве реактивной нагрузки катушки индуктивности приведёт к обратному явлению. В качестве индуктивности можно использовать первичную обмотку любого силового трансформатора. В цепи такой обмотки колебания тока по фазе будут отставать от колебаний напряжения на 90º.

Если у этого сетевого трансформатора есть вторичная обмотка (хорошо, если она будет на 12÷20 Вольт), то мы всегда можем собрать колебательный контур, состоящий из вторичной обмотки данного сетевого трансформатора и конденсатора, чтобы резонансная частота полученного колебательного контура совпала с частотой колебаний в сети (50 Гц).

Настройку колебательного контура лучше выполнить практически, а не по расчётам, чтобы убедиться в том, что данный колебательный контур действительно находится в резонансе с колебаниями сети. Для этого понадобится низкоомный амперметр. Если в хозяйстве нет амперметра на 20÷100 ампер, то можно в разрыв колебательного контура включить шунт сопротивлением приблизительно 0,05 Ом, подключить к нему осциллограф и установить величину реактивного тока в этом колебательном контуре. Значение реактивного тока в колебательном контуре может достигать десятков ампер. Затем, подключая параллельно к основному конденсатору любой конденсатор небольшой емкости, надо наблюдать, что происходит с амплитудой колебания тока в контуре. Если ток продолжает возрастать, то добавляем следующий конденсатор, пока ток в контуре не начнёт убывать. После чего удаляем этот последний конденсатор, измеряем общую ёмкость всех конденсаторов и заменяем их одним или двумя конденсаторами с мощными выводами, рассчитанными на большой реактивный ток.

Напомню о технике безопасности при работе с конденсаторами. Имея дело с полярными конденсаторами, помните, что их нельзя поодиночке включать в цепь переменного тока, а только парами, при условии, что они соединены последовательно и встречно. Это означает, что плюсовой вывод одного конденсатора нужно подключать к плюсовому выводу другого конденсатора или наоборот — соединять их вместе минусовыми выводами. Такие пары конденсаторов уже можно включать в цепь переменного тока, важно лишь, чтобы рабочее напряжение не превышало их паспортное значение.

Второй важный момент заключается в том, что надо следить за нагревом конденсаторов. Если нет возможности приобрести конденсаторы, рассчитанные на большую реактивную мощность (измеряемую в кВАр-ах), то допускается подключение конденсаторов, не рассчитанных на большой реактивный ток, но только на короткое время, при условии, что мы будем следить за их тепловым режимом и не допускать перегрева конденсаторов, что чревато их взрывом. Допускается нагрев до 60÷85º и более, в зависимости от типа конкретного конденсатора.

Итак, при подключенном к вторичной обмотке нашего сетевого трансформатора реактивном элементе — конденсаторе, ток и напряжение в колебательном контуре окажутся сдвинутыми по фазе почти на 900, при условии, конечно, что сечение провода вторичной обмотки и реактивная мощность конденсатора окажутся приличными. Интересно отметить одну важную деталь. Наш трансформатор не только не заметит подключение такого настроенного конденсатора, но и ток его потребления от сети значительно снизится. Об этом я скажу в конце этой работы.

Но, если вместо конденсатора к вторичной обмотке этого же трансформатора подключить активную нагрузку (например, лампочку накаливания), то напряжение и ток снова будут стремиться стать синфазными (сдвиг фаз между их колебаниями будет стремиться к нулю). При этом ток потребления трансформатора немедленно повысится, в соответствии с величиной мощности подключенной активной нагрузки.

При подключении активной нагрузки к вторичной обмотке, сердечник трансформатора намагничивается пропорционально величине тока в нагрузке, а при коротком замыкании вторичной обмотки он может войти в насыщение. При насыщении сердечника трансформатора его магнитные свойства резко снижаются, в результате индуктивность первичной обмотки резко снижается, что сопровождается резким возрастанием тока в первичной обмотке трансформатора и, соответственно, возрастает потребляемая трансформатором от сети мощность. Но реактивные элементы (катушки и конденсаторы), подключаемые параллельно вторичной обмотке трансформатора и настроенные в резонанс с колебаниями в сети, такого эффекта не вызывают (!), несмотря на то, что в цепи колебательного контура вторичной обмотки реактивные токи будут достигать десятков ампер! Возникает интересный вопрос: а можно ли как-то использовать свободные реактивные мощности, достигающие в колебательных контурах огромных значений?


Я не стану рассматривать здесь все виды нагрузок. Кому надо, сами найдёте нужную вам информацию в книгах или в Интернете. А здесь пойдёт речь о возможности аккумулирования и использовании реактивной энергии, свободно гуляющей по колебательному контуру.

А что если в момент, когда напряжение во вторичной обмотке равно нулю, подключить к ней через диод конденсатор и в течение первой четверти периода его заряжать, при условии, что данный конденсатор и вторичная обмотка трансформатора составляют колебательный контур с резонансной частотой 50 Гц? Следовательно, зарядить конденсатор нужно успеть за 20/4=5ms, то есть за первую четверть одного периода колебания (50 Гц).

Если конденсатор зарядится, то, когда напряжение в контуре достигнет максимального значения, нужно отключить конденсатор от вторичной обмотки, так как он больше не сможет зарядиться, а затем разрядить его на активную нагрузку в течение второй четверти периода длительностью 5 ms.

Если этот опыт удастся, то мы можем надеяться, что когда-нибудь сможем научиться использовать свободно гуляющую реактивную мощность в практических целях.

Изобретение 51-летнего сочиннца Сергей Щепелева  поставило в тупик научный мир. Принцип работы придуманного им устройства противоречит официальным физическим парадигмам. «Что мне прикажете — съесть свой диплом?» — только и сказал один из инженеров, приглашённых на демонстрацию прибора. Изобретение 51-летнего сочинца Сергея Щепелева поставило в тупик научный мир. Принцип работы придуманного им устройства противоречит официальным физическим парадигмам. «Что мне прикажете — съесть свой диплом?» — только и сказал один из инженеров, приглашённых на демонстрацию прибора.

Ньютону озарение пришло в виде яблока, свалившегося на голову, Менделеев увидел свою таблицу во сне, а наш земляк свой усилитель придумал, слушая лекцию в индустриальном колледже. Любимой дисциплиной Сергея Щепелева были «Электрические машины». Здесь студенты вдоволь могли поковыряться в двигателях, генераторах, трансформаторах. Как-то раз, слушая преподавателя, который рассказывал про активную и реактивную энергии (последняя, как ненужный балласт, всегда сопутствует первой), Сергей подумал: а как было бы здорово эту бесполезную энергию пустить в дело, сделать полезной! Его так увлекла эта идея, что он посвятил ей и дипломную работу, и всё свободное время. На долгие годы его комната оказалась завалена железками, катушками, проводами.