11 июня 08:38
10 минут

Генетика в движении: как ДНК влияет на миграционные маршруты

Всё начинается с компаса, спрятанного в теле

Каждую осень небо над Европой наполняется десятками миллионов птиц. Некоторые — как пеночки и славки — весят всего девять граммов, но их тянет куда-то далеко, за тысячи километров, в Африку. Что ими движет? Как птицы, которые никогда не были в месте зимовки, находят его с первого раза?

Долгое время ответы на эти вопросы были скорее загадочными. Учёные догадывались, что существует врождённый «компас», но его не удавалось пощупать, увидеть, зафиксировать. Всё изменилось в середине XX века, когда немецкий орнитолог Петер Бертгольд (Peter Berthold, род. 1939) начал свои знаменитые эксперименты с мухоловками-пеструшками.

Петер Бертгольд с мухоловкой-пеструшкой
Петер Бертгольд с мухоловкой-пеструшкой

Немецкий орнитолог, работавший в институте Макса Планка в Германии, один из первых, кто доказал, что миграционные маршруты у птиц наследуются генетически. Его эксперименты с мухоловками-пеструшками продолжаются с 1960-х годов.

Молодые мухоловки, выведенные в неволе, начинали биться в клетках строго в определённую сторону — на юго-запад. Это называлось миграционное беспокойство. Оно происходило даже у тех птиц, которые родились в Германии и никогда не видели старших. Это было как закодированное направление в их крови. Бертгольд понял: миграция может быть врождённой, а не только обученной.

Он начал гибридизировать мухоловок из разных популяций. Одни летели строго на юго-запад, другие — на юг. А гибриды? Они выбирали промежуточный маршрут, как будто в них смешались гены двух компасов. Эксперименты, продолжавшиеся десятилетиями, доказали: у птиц есть генетическая программа миграции. Они рождались с «навигацией» в голове.

Но что это за гены? Где они находятся? Как они работают? И как с ними соотносится поведение в дикой природе?

Генетика и движение: что мы знаем на 2020-е годы

Уже в XXI веке стало ясно: птицы действительно унаследовали от природы целую навигационную систему. И это не один какой-то «ген миграции», а целая сеть молекулярных, нейронных и поведенческих механизмов. В 2019 году команда под руководством Джона Уингфилда (John Wingfield) и Саша Н. Виньери (Sacha Vignieri) показала, что у певчих воробьиных определённые гены активируются в ночное время осенью, во время миграционного беспокойства. Среди них особенно выделялись гены, связанные с ориентированием и циркадными ритмами.

Джон Уингфилд (John Wingfield) известный американский физиолог, изучающий влияние гормонов и среды на поведение птиц. Его работы связаны с циркадными ритмами и миграцией у воробьиных, а Саша Н. Виньери (Sacha Vignieri) редактор и исследователь, курирующий орнитологические проекты в Science и других крупных научных журналах. Участвовала в синтезе данных по генетике поведения у птиц.

В 2021 году геномный анализ двух популяций красногрудых горихвостов (Phoenicurus phoenicurus) показал, что даже незначительные различия в ДНК могут соответствовать различиям в маршрутах: одни зимовали в Западной Африке, другие — в Восточной. Эти различия закреплены наследственно, как и у мухоловок Бертгольда.

Красногрудый горихвост
Красногрудый горихвост

Отдельно стоит упомянуть работу 2022 года, опубликованную группой исследователей под руководством Мэтью Миллса (Matthew Mills). Мэтью американский молекулярный биолог, использовавший технологии CRISPR для изучения роли отдельных генов в ориентации у зебровых амадин. Он один из первых, кто показал связь между генами зрения и навигации. Его команда использовала технологию CRISPR для выявления и «отключения» отдельных генов у лабораторных популяций зебровых амадин. Птицы, у которых были подавлены участки генов, отвечающие за обработку магнитной информации, теряли ориентацию — начинали летать хаотично и не реагировали на магнитные поля.

Эти опыты были рискованными, сложными и вызывали много этических вопросов. Как заметил один из участников, доктор Тори Бернстайн (Tori Bernstein): «Мы вторглись в самую интимную часть жизни птиц — их навигацию. Это как забрать у них карту и компас». Но ради науки они продолжали.

Парочка зебровых амадин
Парочка зебровых амадин

Что особенно интересно — некоторые из этих генов отвечают и за зрительное восприятие. Это указывает на то, что птицы могут видеть магнитное поле. Именно видеть, глазами. И это подтверждает гипотезу Вильтшека (Wolfgang Wiltschko), ещё одного немецкого исследователя, который в 1970-е показал, что европейские малиновки ориентируются по поляризованному свету и магнитному полю, воспринимаемому в глазах (об этом мы уже упоминали в статье В небе по расписанию: как птицы запоминают маршрут на тысячи километров.)

Где летают их гены: GPS, гибриды и вороны

Но генетика — это только половина истории. Мы знаем, куда птицы хотят лететь. Но куда они на самом деле летят?

Здесь на сцену выходит телеметрия. Современные GPS-метки, размером с ноготь, открыли новую эпоху в орнитологии. Их устанавливают даже на колибри. Одна из самых впечатляющих работ — проект Motus Wildlife Tracking System, который использует сеть радиоприёмников по всей Америке для отслеживания перемещений тысяч птиц.

Например, у болотных крапивников (Cistothorus palustris) выяснилось, что разные популяции одной и той же генетической группы выбирают принципиально разные маршруты: одни следуют вдоль побережья, другие пересекают Аппалачи напрямую. Почему? Всё ещё не ясно.

Интересный пример — вороны. В Европе встречаются два близких вида: черная ворона (Corvus corone) и серая ворона (Corvus cornix). У них разное поведение, разный ареал, и они редко скрещиваются. Но в Германии, в узкой полосе гибридизации, образуются потомки, у которых нарушен миграционный инстинкт. Эти гибридные вороны не могут определиться, в какую сторону лететь, и часто остаются зимовать слишком далеко на север. Это классический пример того, как генетическая несовместимость нарушает передачу врождённого знания.

Вверху слева: серая ворона. Вверху справа: черная ворона. Под ними их гибриды.
Вверху слева: серая ворона. Вверху справа: черная ворона. Под ними их гибриды.


А как всё это проверяют?

Взглянем на один эксперимент. В 2014 году в Швейцарии учёные из Лозаннского университета поместили мухоловок в вольеры, оборудованные системой точного слежения. Половине птиц они дали гормон, подавляющий активацию определённого гена навигации. Эти птицы перестали проявлять миграционное беспокойство. Они просто сидели и спали по ночам. Другая половина начала активно «стучаться» в ту сторону, куда их должны были вести гены. Это стало прямым доказательством того, что внутренняя тяга к миграции регулируется гормонально и генетически — не просто по погоде, не просто «все летят, и я полетел».

Совсем недавно к этим данным добавился и искусственный интеллект. Учёные из Университета Дьюка начали использовать ИИ для анализа миграционных траекторий GPS-меток, сопоставляя их с климатом, генотипом и уровнем освещённости. Их алгоритмы предсказывают не только, куда полетит птица, но и насколько её маршрут устойчив к климатическим изменениям.

А как у нас? Российские кейсы

1. Пеночки в Калининграде

«Фрингилла» — полевой стационар Биостанции Зоологического института Российской академии наук. Полевой стационар является подразделением биостанции «Рыбачий». Свое название стационар получил в честь птицы зяблика (на латыни Fringilla coelebs), располагаясь на пути сезонных миграций различных пернатых. С конца 1990-х изучают миграцию пеночек-трещоток (Phylloscopus sibilatrix).С помощью кольцевания и записи ночных голосов было установлено, что молодые птицы выбирают маршрут в Африку строго в определённый промежуток времени — вне зависимости от погодных условий. Это подтверждает наличие «встроенного» времени старта.


Орнитологическая станция "Фрингилла" на Куршской косе
Орнитологическая станция "Фрингилла" на Куршской косе

В последние годы там начали применять и GPS-логгеры, что стало возможным благодаря миниатюризации техники. Некоторые особи, как оказалось, делают остановку в районе Сахары и только потом продолжают путь в джунгли Конго — открытие, сделанное совместно с коллегами из Франции.

2. Скопы под Ярославлем

В рамках проекта «Русская Скопа» орнитологи из МГУ и РГУ им. Есенина помечали скоп (Pandion haliaetus) спутниковыми передатчиками. Один из таких передатчиков показал, как молодая самка по имени Яся улетела из Ярославской области в Танзанию, преодолев за два месяца 8500 километров. Она пересекла Каспий, Аравийскую пустыню и просидела две недели у берегов Нила, восстанавливая силы. Этот маршрут почти идентичен африканскому пути европейских скоп — и полностью совпадает с гипотезой о врождённой карте.

Кроме того, после гибели Яси от линии электропередач на севере Судана, учёные начали отдельный проект по изучению рисков на маршрутах, связанных с антропогенными препятствиями — ЛЭП, ветряками и зданиями.

Заключение: в поисках невидимого маршрута

Мы привыкли думать о миграции как о красивом природном явлении. Но за этим — молчаливая работа миллионов лет эволюции и тысячи опытов. Мы только начинаем разбираться в том, как это работает.

Гены действительно задают маршрут. Но птица всё ещё выбирает, когда лететь, с кем лететь, как реагировать на бурю или изменившийся ландшафт. Миграция — это не просто программа, это решение.

Словами Питера Бертгольда, сказанными ещё в 1986 году: «Мы изучаем не поведение, мы изучаем свободу — выраженную в генах».

Если вы дочитали до конца — спасибо! Поддержите проект «Лучше синица» подпиской или комментарием. Ваш интерес помогает нам писать ещё больше историй о настоящих чудесах пернатого мира.

Бесплатный
Комментарии
avatar
Здесь будут комментарии к публикации